- Created by Unknown User (nagc), last modified on Mar 11, 2016
You are viewing an old version of this page. View the current version.
Compare with Current View Page History
« Previous Version 17 Next »
Model Physics
The physics in the IFS model is approximated to an idealized relaxation towards a radiative-convective equilibrium profile.
Radiation and Convection are parameterized as :
\[ Q = -k(T-T_{eq}) \]where Q is the heating/cooling and k is the relaxation coefficient towards Radiative-Convective equilibrium (Held and Suarez, 1994; Wedi and Smolarkiewicz, 2009).
Configuration
The changes to the OpenIFS scripts and source code to run the model are as follows:
Changes to the Namelist variables:
It is important to correctly set the NAMELIST to configure the Held-Suarez testcase. The variables shown below need to be changed from normal forecast settings.
&NAEPHY LEPHYS=false, ! turns off all physics LERADI=false, ! ..and radiation &NAMPHY LREASUR=false, ! This may be needed to avoid reading surface fields.
&NAMFPC NFPPHY=0, ! No surface fields in post-processing ! remove 133 from MFP3DF and MFP3DFP NFP3DFT=0, NFP3DFV=0,
Activate Held-Suarez testcase
Namelists
To activate, change these variables in the model dynamical core and control setup namelists:
&NAMDYNCORE LDYNCORE=true, ! the initial prognostic fields are set up in suspecg2 LHELDSUAREZ=true, ! the idealized simplified Held-Suarez physics will be called under ec_phys_drv NTESTCASE=15, ! or anything large enough in order to go to the "else" case in ! suspecg2: flat orog, uniform surface pressure and no wind RU00_DYN=0., ! initial idealized zonal wind; no wind initially RT00_DYN=315., ! initial idealized temperature (K) RP00_DYN=100000., ! initial idealized pressure; uniform pressure NOISEVOR=1, ! some noise to break the symmetry
&NAMCT0 N3DINI=7, ! thermal profile to start Held-Suarez case in suspecg2 NFRPOS = 1, ! post-processing output frequency; set to every timestep NPOSTS(0)=1, ! number of outputs NPOSTS(1)= xxx, ! the first output (array index '1') will be at time step xxx, ! to test you can try xxx= last time step of your run (NSTOP)).
For more information on controlling the model output, see How to control OpenIFS output
&NAMMCC LMCCEC = false, ! turn off updating of the boundary conditions, LMCCIEC = false, ! .. and their interpolation in time from the climatology files
For more details about the action of these namelist variables, please see the namelist file in 'ifs/namelist' and it's corresponding module in 'ifs/module' (e.g. ifs/namelist/namct0.nam.h and ifs/module/yomct0.F90).
Changes to code
These changes relate to OpenIFS version 38r1. For later versions please check the code or contact openifs-support@ecmwf.int.
(a) Edit ifs/setup/suphy.F90 and change line containing:
USE YOMDYNCORE, ONLY: LAQUA, LDYNCORE
to
USE YOMDYNCORE, ONLY: LAQUA, LDYNCORE, LHELDSUAREZ
and the line containing
LLDYN=LDYNCORE.AND.NOT.LAQUA
to
LLDYN=LDYNCORE.AND.NOT.(LAQUA.OR.LHELDSUAREZ)
to ensure that routine SUPHEC is called for the simplified Held-Suarez physics (this is a bug in OpenIFS 38r1).
(b) Edit code in ifs/setup/suspecg2.F90 (under K3DINI=7 in suspecg2: line 1049 onwards). This corrects the initial fields:
ELSEIF ( K3DINI == 7 ) THEN ! code changes ZPRESHX(0)=YRVAB%VAH(0)+YRVAB%VBH(0)*ZVP00 DO JLEV=NFLEVG,1,-1 ZPRESHX(JLEV)=YRVAB%VAH(JLEV)+YRVAB%VBH(JLEV)*ZVP00 ENDDO DO JLEV=1,NFLEVG DO JWORD=1,NGPTOT ZPRS = 0.5_JPRB * ( ZPRESHX(JLEV)+ZPRESHX(JLEV-1) ) ZTLAT = 315._JPRB - RDELTA_T*SIN(GELAT(JWORD))**2 ZTALT = RDELTA_THETA * LOG(ZPRS/ZVP00)*COS(GELAT(JWORD))**2 ZT(JWORD,JLEV) = MAX ( 200._JPRB, (ZTLAT-ZTALT)*(ZPRS/ZVP00)**(RD/RCPD) ) ENDDO ENDDO ! end of code changes CALL REESPE(NFLEVL,NFLEVG,ZTEMP,ZT) WRITE (0,*) ' ROUTINE SUSPECG2, DYNAMICAL CORE' ,& &' TEMPERATURE SET TO ',ZTEMP(1,1),ZT(1,1),YRGSGEOM_NB%GEMU(1) ELSE
where:
RDELTA_T - Held-Suarez test: pole - equator temperature difference RDELTA_THETA - Held-Suarez test: tropical heating differential
Initial conditions
You can use any initial files as initial conditions. The initial file in this case is only used to set the model's horizontal and vertical resolution. The prognostic variables read from the file will be overwritten by the code in suspecg2. The orography is flat. There is no initial mean wind, only perturbation in the vorticity to break the symmetry.
References
Held I, Suarez M. 1994. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Am. Meteorol. Soc. 73: 1825–1830.
Wedi, N. P. and Smolarkiewicz, P. K., 2009, A framework for testing global non-hydrostatic models. Q.J.R. Meteorol. Soc., 135: 469–484. doi:10.1002/qj.377
Acknowledgements
OpenIFS would like to thanks Aneesh Subramanian (University of Oxford) and Sylvie Malardel (ECMWF) for their contribution in preparing this material.
Zonal mean wind field from a 1500 day long model run for the Held-Suarez testcase. The model fields are averaged for the last 1000 days. The model was run at T159 spectral resolution.
Zonal mean temperature field from a 1500 day long model run for the Held-Suarez testcase. The model fields are averaged for the last 1000 days. The model was run at T159 spectral resolution.
- No labels