EUMETSAT infrastructure contains RX A6000 NVIDIA GPU cards. To employ the GPU, one need to provision one of the following flavors:
Flavor name | vCPU | RAM | vGPU Type | vGPU RAM | SSD storage (GB) |
---|---|---|---|---|---|
vm.a6000.1 | 2 | 14 GB | RTXA6000-6C | 6 GB | 40 |
vm.a6000.2 | 4 | 28 GB | RTXA6000-12C | 12 GB | 80 |
vm.a6000.4 | 8 | 56 GB | RTXA6000-24C | 24 GB | 160 |
vm.a6000.8 | 16 | 112 GB | RTXA6000-48C | 48 GB | 320 |
To use the GPUs:
- Provision new Centos or Ubuntu instance.
- Select layouyt ending with
eumetsat
-gpu and one of the plans listed above. Beside that, configure your instance as preferred and continue deployment process. - Once VM is deployed, you can verify GPUs for example using
nvidia-smi
program from command line (see below for confirming library installations and drivers).
Usage
Useful commands
You can see GPU information using nvidia-smi
$ nvidia-smi Mon Jan 8 10:24:59 2024 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 470.161.03 Driver Version: 470.161.03 CUDA Version: 11.4 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA RTXA6000... On | 00000000:00:05.0 Off | 0 | | N/A N/A P8 N/A / N/A | 3712MiB / 48895MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+
NVIDIA tools are available in /usr/local/cuda-11.4/bin/. You can add them to PATH following:
export PATH=$PATH:/usr/local/cuda-11.4/bin/
Libraries
CUDA version is currently 11.4 which need to be the same with drivers and thus can't be changed. Tensorflow library compatibility is available at: https://www.tensorflow.org/install/source#gpu. We have tested that TensorFlow > 2.6.1 work.
Using Conda
Update and conda installation
# change shell to bash for installations bash # update default packages sudo apt-get update sudo apt-get update # it's possible to get some update key and dirmngr errors while updating, below commands supply a workaround. After running the workaround, run update & upgrade again. sudo apt install dirmngr sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys <YOUR-KEY-LIKE-AA16FCBCA621E701> # install miniforge (or any anaconda manager) wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh chmod +x Miniforge3-Linux-x86_64.sh ./Miniforge3-Linux-x86_64.sh #When it asks, conda init? answer yes #Do you wish the installer to initialize Miniforge3 #by running conda init? [yes|no] #[no] >>> yes exit bash
Library installations
sudo apt install -y docker.io sudo usermod -aG docker $USER
Confirmation of installations
sudo apt install -y docker.io sudo usermod -aG docker $USER
#Using Docker
If you want to use GPUs in docker, you need to take few extra steps after creating the VM.
Install Docker
In ubuntu:sudo apt install -y docker.io sudo usermod -aG docker $USER
In Centos:
sudo yum-config-manager \ --add-repo \ https://download.docker.com/linux/centos/docker-ce.repo sudo yum install docker-ce docker-ce-cli containerd.io sudo systemctl --now enable docker sudo usermod -aG docker $USER
- Logout and login again
Install nvidia-container toolkit
Ubuntu:distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit sudo systemctl restart docker
Centos:
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \ && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo sudo yum clean expire-cache && sudo yum install -y nvidia-docker2 sudo systemctl restart docker
Run GPU-compatible notebook. For example:
docker run --gpus all -it --rm -v $(realpath ~/notebooks):/tf/notebooks -p 8888:8888 tensorflow/tensorflow:latest-gpu-jupyter