You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 21 Next »

The description of this dataset and its verification has been documented in a data description paper submitted  in Nature Scientific Report. Please cite this paper fi you use the dataset 

Di Giuseppe et al Fire Danger seasonal forecast: data and predictability, Scientific Data (2023)

 

In Brief 

This dataset provides modelled daily fire danger time series forced with seasonal meteorological reforecasts. It provides long range prediction of meteorological conditions favourable to the start, spread and sustainability of fires. The fire danger metrics provided are part of a vast dataset produced by the Copernicus Emergency Management Service (CEMS) for the European Forest Fire Information System (EFFIS). EFFIS incorporates the fire danger indices for the U.S. Forest Service National Fire-Danger Rating System (NFDRS), the Canadian Forest Service Fire Weather Index Rating System (FWI), and the Australian McArthur (Mark 5) rating systems.

This dataset was produced by forcing the Global ECMWF Fire Forecast  (GEFF, https://git.ecmwf.int/projects/CEMSF/repos/geff/browse) model with seasonal meteorological ensemble reforecasts. The forcing meteorological data are seasonal reforecasts from the European Centre of Medium-range Weather Forecasts (ECMWF) System5 (SEAS5), consisting of 25 ensemble members up until December 2016, and after that 51 members. The temporal resolution is daily forecasts at 12 local time initialised once a month with an horizon of 216 days (7 months) over the past period 1981-2022. The selected data records in this data set will be extended with time as SEAS5 forcing data become available. This is however not a real time service as real time forecasts are made available through the EFFIS/GWIS web services

Reforests are forecasts run over past dates and are typically used to assess the skill of a forecast system or to develop tools for statistical error correction of the forecasts. This dataset is produced by ECMWF in its role of the computational centre for fire danger forecast of the CEMS, on behalf of the Joint Research Centre which is the managing entity of the service.

Fire danger variables descriptions

The Canadian Fire Weather index 



Schematic of the FWI

The Canadian Fire Weather Index (FWI) is a system used in Canada to assess the potential risk and behavior of forest fires. It provides a numerical rating that indicates the relative ease of ignition and the potential intensity of fire spread in forest fuels. The FWI system incorporates various weather and fuel moisture measurements to generate indices that collectively describe the fire danger level. The purpose of the Canadian Fire Weather Index is to assist fire managers, fire behavior analysts, and meteorologists in making informed decisions regarding fire prevention, preparedness, and suppression strategies. It helps in allocating firefighting resources efficiently by identifying areas with high fire risk and potential fire behavior. There are various indices that are provided

a. Fine Fuel Moisture Code (FFMC):
The FFMC represents the moisture content of surface organic materials, such as grasses, needles, and small twigs. It quantifies the ease of ignition and the flammability of fine fuels. The FFMC ranges from 0 to 101, where higher values indicate drier and more easily ignitable fuels.

b. Duff Moisture Code (DMC):
The DMC measures the moisture content of decomposed organic material beneath the surface layer. It represents the availability of fuel for smoldering fires. The DMC ranges from 0 to 1000, with higher values indicating drier conditions.

c. Drought Code (DC):
The DC quantifies the moisture content of deep, compact organic layers. It reflects the droughtiness of deep fuels and their potential for sustaining intense, high-severity fires. The DC ranges from 0 to 1000, with higher values indicating drier conditions.

d. Initial Spread Index (ISI):
The ISI estimates the potential rate of fire spread immediately after ignition. It considers wind speed and the FFMC. The ISI ranges from 0 to 50, with higher values indicating a faster fire spread potential.

e. Buildup Index (BUI):
The BUI represents the total amount of fuel available for combustion. It considers the DMC and DC. The BUI ranges from 0 to 1000, with higher values indicating a greater quantity of available fuel.

f. Fire Weather Index (FWI):
The FWI is the composite index that summarizes the overall fire danger. It combines the FFMC, DMC, and DC into a single value. The FWI ranges from 0 to 100, with higher values indicating more severe fire weather conditions.

The Canadian Fire Weather Index values are calculated using complex mathematical equations based on observed weather data and fuel moisture codes. These calculations are typically automated using specialized software or online tools. The resulting numerical values can be interpreted as follows:

- FFMC, DMC, and DC values below 80 generally indicate low fire danger.
- FFMC, DMC, and DC values between 80 and 90 indicate moderate fire danger.
- FFMC, DMC, and DC values above 90 indicate high fire danger.
- ISI values above 10 indicate high potential for fire spread.
- BUI values above 40 indicate an increasing potential for large fires.
- FWI values above 30 indicate high fire danger conditions.

It is important to note that interpretation guidelines may vary based on regional standards and operational practices. Local fire management agencies may provide specific thresholds and guidelines for their respective areas.

The Canadian Fire Weather Index is used in a range of applications, including:

- Wildfire management and suppression: It helps fire managers assess the current and forecasted fire danger levels and allocate firefighting resources accordingly.
- Prescribed burning: The FWI assists in determining suitable conditions for conducting controlled burns, reducing the risk of unplanned wildfires.
- Fire danger rating: The FWI system aids in developing fire danger rating systems to inform the public, land managers, and emergency response agencies about the level of fire risk in a given area.

While the Canadian Fire Weather Index provides valuable information for assessing fire danger, it has certain limitations:

- It does not account for the presence of ignitions sources, such as lightning strikes or human activities.
- It does not incorporate topographic influences, which can significantly affect fire behavior.
- The accuracy of the FWI is dependent on the availability and quality of weather and fuel moisture data.


 References:
- Canadian Forest Service. (2018). Fire Weather Index System: User's Guide. Natural Resources Canada.

- Canadian Wildland Fire Information System (CWFIS). (n.d.). Fire Weather Index System.

The National Fire Danger Rating System (NFDRS) 

Schematic for the NFDRS

The National Fire Danger Rating System (NFDRS) is a comprehensive fire danger assessment and prediction system used in the United States. It provides standardized methods for evaluating fire danger conditions based on weather, fuels, and fire behavior factors. The purpose of the NFDRS is to assist fire management agencies, firefighters, and land managers in assessing fire danger, predicting fire behavior, and making informed decisions regarding fire prevention, preparedness, and suppression strategies. There are various components of the National Fire Danger Rating System:

a. Fuel Models:
The NFDRS incorporates different fuel models that represent various vegetation and fuel types across different regions. Fuel models provide information on fuel load, fuel moisture content, and fuel characteristics, which are essential for fire danger assessment and fire behavior prediction.

b. Fire Behavior Prediction (FBP) System:
The FBP system utilizes mathematical equations and empirical models to estimate fire behavior parameters, such as rate of spread, flame length, and fireline intensity. It considers weather conditions, fuel moisture, and fuel models to predict fire behavior under different scenarios.

c. Fire Danger Rating (FDR) System:
The FDR system combines weather, fuel moisture, and fire behavior factors to generate fire danger ratings. It provides standardized indices that indicate the level of fire danger and potential fire behavior. The FDR system helps fire managers assess and communicate the fire danger to personnel and the public.

d. Fire Danger Indices:
The NFDRS calculates several fire danger indices, including the Energy Release Component (ERC), Burning Index (BI), Spread Component (SC), and others. These indices represent different aspects of fire danger, such as fuel flammability, potential rate of fire spread, and potential fire intensity.

The National Fire Danger Rating System utilizes complex calculations based on observed weather data, fuel models, and fire behavior equations. The resulting numerical values and indices can be interpreted as follows:

- Fire danger indices are typically rated on a numerical scale, such as a 1-100 or a 0-10 scale.
- Higher values indicate more severe fire danger, increased potential for fire spread, and greater fire behavior intensity.
- Interpretation guidelines and thresholds may vary based on regional standards, local practices, and fire management agency guidelines.

Fire danger ratings often include descriptors, such as low, moderate, high, very high, and extreme, to provide additional context for interpreting the numerical values.

The NFDRS has various applications, including:

- Fire management and suppression: It assists fire managers in assessing fire danger levels, predicting fire behavior, and allocating firefighting resources effectively.
- Prescribed burning: The system helps in planning and implementing controlled burns by considering fire danger and potential fire behavior.
- Fire weather forecasting: The NFDRS aids meteorologists in providing fire weather forecasts and warnings to support fire management operations.

While the National Fire Danger Rating System is a valuable tool, it has certain limitations:

- It relies on accurate and up-to-date weather data and fuel moisture measurements.
- The system may not fully account for local variations in topography and vegetation characteristics.
- Fire behavior can be influenced by factors not explicitly considered in the system, such as the presence of structures or human-made modifications.

 References:
- National Wildfire Coordinating Group (NWCG). (2004). National Fire Danger Rating System: 2016.

- Andrews, P. L. (1986). BEHAVE: Fire Behavior Prediction and Fuel Modeling System—FUEL Subsystem. Gen. Tech. Rep. INT-194. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station.

McArthur's Fire Danger Rating System

The first MRk4 meter


McArthur's Fire Danger Rating System is a widely used fire danger assessment system in Australia. It provides a quantitative rating of fire danger based on weather and fuel moisture conditions. The system was developed by Dr. Richard McArthur in the 1960s and has undergone several revisions since then.The purpose of McArthur's Fire Danger Rating System is to assess and communicate the potential risk and behavior of bushfires and wildfires. It helps fire agencies, land managers, and the public make informed decisions regarding fire prevention, preparedness, and response strategies. There are several components of McArthur's Fire Danger Rating System:

a. Fire Danger Index (FDI):
The Fire Danger Index represents the overall fire danger rating. It considers weather variables such as temperature, relative humidity, wind speed, and rainfall, as well as fuel moisture content. The FDI ranges from 1 to 100, with higher values indicating more severe fire weather conditions and increased fire danger.

b. Grassland Fire Danger Index (GFDI) (not provided):
The Grassland Fire Danger Index specifically assesses fire danger in grassland areas. It takes into account weather conditions and fuel moisture content relevant to grassland fuels. The GFDI ranges from 1 to 100, with higher values indicating higher fire danger in grassland environments.

c. Forest Fire Danger Index (FFDI) (not provided):
The Forest Fire Danger Index is designed to evaluate fire danger in forested areas. It considers weather conditions and fuel moisture content specific to forest fuels. The FFDI ranges from 1 to 100, with higher values indicating higher fire danger in forested environments. 

McArthur's Fire Danger Rating System uses mathematical equations to calculate the Fire Danger Index (FDI), Grassland Fire Danger Index (GFDI), and Forest Fire Danger Index (FFDI). These calculations incorporate observed weather data, such as temperature, humidity, wind speed, and rainfall, along with fuel moisture information. The resulting numerical values can be interpreted as follows:

- FDI, GFDI, and FFDI values below 12 generally indicate low fire danger.
- FDI, GFDI, and FFDI values between 12 and 24 indicate moderate fire danger.
- FDI, GFDI, and FFDI values above 24 indicate high fire danger.
- Higher values within each range indicate increasing severity of fire danger.

It is important to note that specific interpretations and thresholds may vary based on regional standards, local practices, and fire management agency guidelines.

McArthur's Fire Danger Rating System has various applications, including:

- Fire management and suppression: It assists fire agencies in assessing fire danger levels, predicting fire behavior, and allocating firefighting resources effectively.
- Fire permits and restrictions: The rating system helps determine the need for fire permits and implement fire restrictions based on the assessed fire danger.
- Public awareness and education: The system aids in communicating fire danger to the public and promoting awareness of fire safety measures during periods of elevated fire risk.


While McArthur's Fire Danger Rating System is a valuable tool, it has certain limitations:

- It does not consider local variations in topography, which can significantly influence fire behavior.
- The accuracy of the system relies on the availability and quality of weather data and fuel moisture measurements.
- The rating system does not account for local fire history or specific fire-prone vegetation types.

References:
- McArthur, A. G. (1973). Forest Fire Danger Meter. Australian Forestry, 36(1), 39-45.
- McArthur, A. G., Noble, I. R., & Bary, G. A. V. (1982). Forest fire danger meter-1977. Forest and Timber Bureau, Canberra, Australia.

- Bureau of Meteorology (Australia). (n.d.). Fire Danger Rating and the McArthur Forest Fire Danger Index. 


Available variables


We provide the following subset of variables 


MAIN VARIABLES
NameUnitsDescription
Build-up indexDimensionlessThe Build-Up Index is a weighted combination of the Duff moisture code and Drought code to indicate the total amount of fuel available for combustion by a moving flame front. The Duff moisture code has the most influence on the Build-up index value. For example, a Duff moisture code value of zero always results in a Build-up index value of zero regardless of what the Drought code value is. The Drought code has the strongest influence on the Build-up index when Duff moisture code values are high. The greatest effect that the Drought code can have is to make the Build-up index value equal to twice the Duff moisture code value. The Build-up index is often used for pre-suppression planning purposes.
Burning indexDimensionlessThe Burning Index measures the difficulty of controlling a fire. It is derived from a combination of Spread component (how fast it will spread) and Energy release component (how much energy will be produced). In this way, it is related to flame length, which, in the Fire Behavior Prediction System, is based on rate of spread and heat per unit area. However, because of differences in the calculations for Burning index and flame length, they are not the same.
Drought codeDimensionlessThe Drought code is an indicator of the moisture content in deep compact organic layers. This code represents a fuel layer at approximately 10-20 cm deep. The Drought code fuels have a very slow drying rate, with a time lag of 52 days. The Drought code scale is open-ended, although the maximum value is about 800.
Drought factorDimensionlessThe drought factor is a component representing fuel availability. It is is given as a number between 0 and 10 and represents the influence of recent temperatures and rainfall events on fuel availability (see Griffiths 1998 for details). The Drought Factor is partly based on the soil moisture deficit which is commonly calculated in Australia as the Keetch-Byram Drought Index (KBDI) (also available). The KBDI estimates the soil moisture below saturation up to a maximum field capacity of 203.2 mm (i.e. 8 inches) and a minimum of 0 mm.
Duff moisture codeDimensionlessThe Duff moisture code is an indicatore of the moisture content in loosely-compacted organic layers of moderate depth. It is representative of the duff layer that is 5-10 cm deep. Duff moisture code fuels are affected by rain, temperature and relative humidity. Because these fuels are below the forest floor surface, wind speed does not affect the fuel moisture content. The Duff moisture code fuels have a slower drying rate than the Fine fuel moisture code fuels, with a timelag of 12 days. Although the Duff moisture code has an open-ended scale, the highest probable value is in the range of 150.
Energy release componentJ/m2The Energy release component is a number related to the available energy (British Thermal Unit) per unit area (square foot) within the flaming front at the head of a fire. Daily variations in Energy release component are due to changes in moisture content of the various fuels present, both live and dead. Since this number represents the potential "heat release" per unit area in the flaming zone, it can provide guidance to several important fire activities. It may also be considered a composite fuel moisture value as it reflects the contribution that all live and dead fuels have to potential fire intensity. The Energy release component is a cumulative or "build-up" type of index. As live fuels cure and dead fuels dry, the Energy release component values get higher thus providing a good reflection of drought conditions. The scale is open-ended or unlimited and, as with other National Forest Danger Rating System components, is relative.
Fine fuel moisture codeDimensionlessThe Fine fuel moisture code is an indicatore of the moisture content in litter and other cured fine fuels (needles, mosses, twigs less than 1 cm in diameter). The Fine fuel moisture code is representative of the top litter layer less than 1-2 cm deep. Fine fuel moisture code values change rapidly because of a high surface area to volume ratio, and direct exposure to changing environmental conditions. The Fine fuel moisture code scale ranges from 0-99 and is the only component of the Fire weather index system which does not have an open-ended scale. Generally, fires begin to ignite at Fine fuel moisture code values near 70, and the maximum probable value that will ever be achieved is 96.
Fire daily severity indexDimensionlessNumeric rating of the difficulty of controlling fires. It is an exponential transformation of the Fire weather index and more accurately reflects the expected efforts required for fire suppression as it increases exponentially as the Fire weather index is above a certain value.
Fire danger indexDimensionlessThe Fire danger index is a metric related to the chances of a fire starting, its rate of spread, its intensity, and its difficulty of suppression. It is open ended however a value of 50 and above is considered extreme in most vegetation
Fire weather indexDimensionlessThe Fire weather index is a combination of Initial spread index and Build-up index, and is a numerical rating of the potential frontal fire intensity. In effect, it indicates fire intensity by combining the rate of fire spread with the amount of fuel being consumed. Fire weather index values are not upper bounded however a value of 50 is considered as extreme in many places. The Fire weather index is used for general public information about fire danger conditions.
Ignition component%The Ignition component measures the probability a firebrand will require suppression action. Since it is expressed as a probability, it ranges on a scale of 0 to 100. An Ignition component of 100 means that every firebrand will cause a fire requiring action if it contacts a receptive fuel. Likewise an Ignition component of 0 would mean that no firebrand would cause a fire requiring suppression action under those conditions.
Initial spread indexDimensionlessThe Initial spread index combines the Fine fuel moisture code and wind speed to indicate the expected rate of fire spread. Generally, a 13 km h-1 increase in wind speed will double the Initial spread index value. The Initial spread index is accepted as a good indicator of fire spread in open light fuel stands with wind speeds up to 40 km h-1.
Keetch-Byram drought indexDimensionless

The Keetch-Byram drought index (KBDI) is a number representing the net effect of evapotranspiration and precipitation in producing cumulative moisture deficiency in deep duff and upper soil layers. It is a continuous index, relating to the flammability of organic material in the ground.The Keetch-Byram drought index attempts to measure the amount of precipitation necessary to return the soil to saturated conditions. It is a closed system ranging from 0 to 200 units and represents a moisture regime from 0 to 20 cm of water through the soil layer. At 20 cm of water, the Keetch-Byram drought index assumes saturation. Zero is the point of no moisture deficiency and 200 is the maximum drought that is possible. At any point along the scale, the index number indicates the amount of net rainfall that is required to reduce the index to zero, or saturation.

KBDI = 0 - 50: Soil moisture and large class fuel moistures are high and do not contribute much to fire intensity. Typical of spring dormant season following winter precipitation.

KBDI = 50 - 100: Typical of late spring, early growing season. Lower litter and duff layers are drying and beginning to contribute to fire intensity.

KBDI = 100 - 150: Typical of late summer, early fall. Lower litter and duff layers actively contribute to fire intensity and will burn actively.

KBDI = 150 - 200: Often associated with more severe drought with increased wildfire occurrence. Intense, deep burning fires with significant downwind spotting can be expected. Live fuels can also be expected to burn actively at these levels.

Spread componentDimensionlessThe Spread component is a measure of the spead at which a headfire would spread. The spread component is numerically equal to the theoretical ideal rate of spread expressed in feet-per-minute however is considered as a dimensionless variable. The Spread component is expressed on an open-ended scale; thus it has no upper limit.

Time Interpolation to local noon

A model integration at any nominal time will simulate the atmospheric conditions at a different local time depending on the location. A temporal and spatial collage of 24-h time model simulations is performed to produce a snapshot at 1200 local time. Thus, temperature and relative humidity fields are cut into, for example, 3-hourly time strips using the closest 3-h forecast output and then concatenated together so that the final field is representative of the conditions around the local noon within the 3-h resolution available. Using this method, the driving forcing are a composite of forecast outputs at different lead times in a 24-h interval and could therefore have different forecast accuracy. This inconsistency is assumed insignificant given the limited difference in forecast skills in a 24-h lead time range (Buizza et al. 1999)[1]. The most common way to achieve a 12 local time field is through a concatenation of fields. Adjacent stripes of forecasts can be sliced together as highlighted in Figure. The simplicity of the approach however implies that artefact can be introduced at the interface between two slices.

Concatenation of forecasts to derive a field at 12 local time everywhere. The discontinuity line represents the change of date. The stripes are taken from the forecast times specified at the bottom.


ECMWF has developed a new interpolation method performing a weighted average between the two closest timesteps. Below is a graphical explanation of the way the two methods are implemented is provided. If we extract the time series of two locations 1 and 2 near a change of time, the 24 hours forecast will provide the diurnal time for temperature (here chosen as an example) in those points. If we are interested in the value of temperature at 12 local time this will be the value of the prediction at 12 UTC for point 1 and 15 UTC for point 2 in the assumption of a 3-hour resolution forecast. The choice of the different forecast will create a discontinuity in the fields as depicted in the map. The new method instead will interpolate for both points between the value at 12 UTC and the value at 15UTC by weighting the two temperatures by their closeness to any available forecast. This new method provides a much closer agreement to the real diurnal cycle and removes the boundary artefacts that were presented above.

 Interpolation methods to obtain a 12 local time composite fields. The "stripes" method implements a nearest neighbour approach, the "interpolation" method adopts a weighted bilinear interpolation between successive time stamps. The left-hand side figure shows the collated temperature fields for one sample day. The right-hand side figure shows the diurnal cycle for temperature in the two points indicated with “1” and “2” and the corresponding interpolated value in the two cases



Usage notes 

Download global fire danger forecast maps

Downloading these data is rather straight forward using the CDS web interface. The registered user needs to tick a few boxes to specify the index, period of interest and type of data, then click on a `Download' button. For larger data requests, the use of the CDS API is recommended. Below an example script is provided.

Retrieve First month of Seasonal FWI
import cdsapi

c = cdsapi.Client()

c.retrieve(
    'cems-fire-seasonal-reforecast',
    {
        'format': 'grib',
        'variable': 'fire_weather_index',
        'system_version': '4_1',
        'year': '1985',
        'month': '09',
        'leadtime_hour': [
            '12', '36', '60',
            '84', '108', '132',
            '156', '180', '204',
            '228', '252', '276',
            '300', '324', '348',
            '372', '396', '420',
            '444', '468', '492',
            '516', '540', '564',
            '588', '612', '636',
            '660', '684', '708',
        ],
    },
    'download.grib')

Plotting data using the CDS toolbox

To harness the power of the CDS, users are invited to familiarise with the CDS Toolbox. This is an interactive environment that allows to process and plot data without necessarily downloading them. This is particularly useful for users with limited bandwidth and/or unstable connections. The toolbox is designed to develop python applications that can be shared with other users, hence streamlining collaborative research and development. The script below can be pasted in the toolbox editor to generate a static map of the Fire Weather Index (as they are shown in the EFFIS and GWIS platform) that can be exported and used for reports and publications. 

Example Plotting FWI from Reanalysis in CDS Toolbox
import cdstoolbox as ct
# Magics plot configuration dictionary
MAP_CONFIG = {    
    'contour': {
        'contour_level_selection_type': 'level_list',
        'contour_level_list': [0, 5.2, 11.2, 21.3, 38, 50, 150],
        'contour_shade': 'on',
        'contour_label': 'off',
        'contour_shade_method': 'area_fill',
        'contour_shade_colour_method': 'list',
        'contour_shade_colour_list': ['#84F07F', '#FFEB3C', '#FFB00C',
                                      '#FA4F00', '#B40000', '#280923'],
        'contour': 'off',
        'legend': 'on',
    },
    'legend': {
        'legend_text_colour': 'black',
        'legend_text_font_size': 0.4,
        'legend_display_type':'continuous',
    }
}
# Initialise the application
@ct.application(title='Fire Weather Index 2020-07-01', fullscreen=True)
@ct.output.figure()
def application():
    # Retrieve full resolution FWI data for a single date
    data = ct.catalogue.retrieve(
        'cems-fire-historical-v1',
        {
            'product_type': 'reanalysis',
            'variable': 'fire_weather_index',
            'dataset_type': 'consolidated_dataset',
            'system_version': '4_1',
            'year': '2020',
            'month': '07',
            'day': '01',
            'grid': '0.5/0.5',
        }
    )
    # Plot the data using the defined configuration MAP_CONFIG on a dynamic map
    plot = ct.map.plot(data, **MAP_CONFIG)
     
    return plot
  • No labels