Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Confirmed.
Panel
titleVisualising ODB in Magics

There are several ways on visualisating ODB data in Magics.

  • use the ODB Magics objects. This allows Magics to read a odb file and extract some columns for geographical plots or graph.
  • In python, it also possible to use odb_api packages to create a numpy array and pass the values in memeoty to Magics. magics is then able to perform symbol plotting on a geographical area, time series, etc .. 

This page will present presents examples of these different plottingsvisualisation, and will offer offers skeletons of python programs.

Table of Contents

 

...

To run the example at ECMWF:

  • download python scripts and data
  • module load Magics/new
  • module load odb_api

 toc

Using an ODB file and create a geographical map

...

Section

 

 

Column
width350px

Column
width70%
Code Block
languagepy
titleSimple symbol plotting
collapsetrue
# importing Magics module
from Magics.macro import *

# Setting of the output file name
output = output(output_formats=['png'],
                output_name_first_page_number='off',
                output_name="odb_step1")

# Background Coastlines
background = mcoast(
    map_coastline_sea_shade_colour='white',
    map_coastline_land_shade_colour='cream',
    map_grid='on',
    map_coastline_land_shade='on',
    map_coastline_sea_shade='on',
    map_label='on',
    map_coastline_colour='tan',
    )
# Import odb data
odb = odb_geopoints(odb_filename='geo.odb',
                    odb_latitude_variable='lat@hdr',
                    odb_longitude_variable='lon@hdr',
                    )
# Define the symbol plotting
symbol = msymb(symbol_type='marker',
               symbol_colour='navy',
               symbol_marker_index=3,
               symbol_height=0.4,
            )
# Add a title 
lines = ['Using odb...', 
         'select lat@hdr, lon@hdr, obsvalue@body where (source=\'ispdv2.2\') and (varno=110)',
         ]

title = mtext(
    text_lines=lines,
    text_justification='left',
    text_font_size=0.7,
    text_colour='charcoal',
)

#Create the plot
plot(output, background, odb, symbol, title)
Section

Download :

 

Now, we are going to colour the symbol according to the value of the observation. The advanced mode for symbol plotting offers an easy way to specify range and colours, we add a legend for readability.

Section
Column
width350px

Image RemovedImage Added

Column
width70%
Code Block
languagepy
titleAdvanced symbol plotting
collapsetrue
# importing Magics module
from Magics.macro import *

# Setting of the output file name
output = output(output_formats=['png'],
                output_name_first_page_number='off',
                output_name='odb_step2')

# Background Coastlines
background = mcoast(
    map_coastline_sea_shade_colour='white',
    map_coastline_land_shade_colour='cream',
    map_grid='on',
    map_coastline_land_shade='on',
    map_coastline_sea_shade='on',
    map_label='on',
    map_coastline_colour='tan',
    )

# Import odb data
odb = odb_geopoints(odb_filename='geo.odb',
                    odb_latitude_variable='lat@hdr',
                    odb_longitude_variable='lon@hdr',
                    odb_value_variable='obsvalue@body',
                    )

# Define the symbol plotting
symbol = msymb(symbol_type='marker',
               symbol_colour='navy',
               symbol_advanced_table_selection_type='list',
               symbol_advanced_table_level_list=[50000., 75000., 90000., 100000., 
							100500., 101000., 101500., 102000., 102500., 103000., 
							103500., 104000., 105000.],
               symbol_advanced_table_min_level_colour='blue',
               symbol_advanced_table_max_level_colour='red',
               symbol_advanced_table_colour_direction='clockwise',
               symbol_table_mode='advanced',
               legend='on'
               )
#Adding some text
lines = ['Using odb colouring the sumbol according to the value of the observation...', 
         'select lat@hdr, lon@hdr, obsvalue@body where (source=\'ispdv2.2\') and (varno=110)',]

title = mtext(
    text_lines=lines,
    text_html='true',
    text_justification='left',
    text_font_size=0.7,
    text_colour='charcoal',
    )

#adding some legend
legend = mlegend(legend='on', legend_text_colour='navy',
                 legend_display_type='continuous')


#Create the plot
plot(output, background, odb, symbol, title,legend)

Create a time series

Section

Download :

Loading the data into a numpy array and passing them to Magics

 

Note the facilities offered by numpy to perform some computations and the histogram legend facilities of Magics.

Section
Column
width350px

Image Added

Column
width70%
Code Block
languagepy
titleUsing numpy array
collapsetrue
 
# importing Magics module
from Magics.macro import *
#Loading ODB in a numpy array
import odb
import numpy
import datetime

odb = numpy.array([r[:] for r in
               odb.sql("select lat@hdr, lon@hdr, obsvalue@body from '%s'"
               % 'geo.odb')])

lat = odb[:, 0]
lon = odb[:, 1]
#Here we convert the values from Pascal to HectoPascal.
values = odb[:, 2]/100

# Setting of the output file name
output = output(output_formats=['png'],
                output_name_first_page_number='off',
                output_name='odb_step3')



# Background Coastlines
background = mcoast(
    map_coastline_sea_shade_colour='white',
    map_coastline_land_shade_colour='cream',
    map_grid='on',
    map_coastline_land_shade='on',
    map_coastline_sea_shade='on',
    map_label='on',
    map_coastline_colour='tan',
    )

#Set the input data
input = minput(input_latitude_values=lat,
               input_longitude_values=lon,
               input_values=values)

# Define the symbol plotting
symbol = msymb(symbol_type='marker',
               symbol_colour='navy',
               symbol_advanced_table_selection_type='interval',
               symbol_advanced_table_interval=5.,
               symbol_advanced_table_min_level_colour='blue',
               symbol_advanced_table_max_level_colour='red',
               symbol_advanced_table_colour_direction='clockwise',
               symbol_table_mode='advanced',
               legend='on'
               )
#Adding some text
lines = ['Using odb colouring the sumbol according to the value of the observation...', "select lat@hdr, lon@hdr, obsvalue@body where (source='ispdv2.2') and (varno=110)",
         '<magics_title/>']

title = mtext(
    text_lines=lines,
    text_html='true',
    text_justification='left',
    text_font_size=0.7,
    text_colour='charcoal',
    )

#adding some legend
legend = mlegend(legend='on', legend_text_colour='navy',
                 legend_display_type='histogram',
                 legend_label_frequency=5)


#Create the plot
plot(output, background, input, symbol, title,legend)

Section

Download :

Creating a time series from an ODB data.

In this example, we will first setup a cartesian projection for In this example, we will first setup a cartesian projection for the time series: the x axis will show the date from January 2005 to December 2010, and the y axis will represent the number of observation for each day, i.e. a range from 0 to 1000. 

...

The plot command will create a png showing the projection represented by the 2 axis. 

 

Section
Column
width350px

Image RemovedImage Added

Column
width70%
Code Block
languagepy
titleSetting the time series
collapsetrue
# importing Magics module
import Magics.macro as magics


# Setting of the output file name
output = magics.output(output_formats=['png'],
                output_name_first_page_number='off',
                output_name='odb_graph1')



# Define the cartesian projection
map = magics.mmap(subpage_map_projection = "cartesian",
                  subpage_x_axis_type = 'date',
                  subpage_y_axis_type = 'regular',
                  subpage_x_date_min = '2005-01-01',
                  subpage_x_date_max = '2010-12-31',
                  subpage_y_min = 0.,
                  subpage_y_max = 1000.,
                  subpage_y_position = 5.)
#define the axis
horizontal_axis = magics.maxis(axis_orientation = "horizontal",
                               axis_type = 'date',
                               axis_date_type = "automatic",
                               axis_grid = "on",
                               axis_grid_line_style = "solid",
                               axis_grid_thickness = 1,
                               axis_grid_colour = "grey",
                               axis_minor_tick ='on',
                               axis_minor_grid ='on',
                               axis_minor_grid_line_style = "dot",
                               axis_minor_grid_colour = "grey",
                               axis_title = 'on',
                               axis_title_text = "Time...",

                               )
vertical_axis = magics.maxis(axis_orientation = "vertical",
                               axis_grid = "on",
                               axis_grid_line_style = "solid",
                               axis_grid_thickness = 1,
                               axis_grid_colour = "grey",
                            )
#Add a text
title = magics.mtext(text_lines=['Preparing the time series'])

# Execute the plot.
magics.plot(output, map, horizontal_axis, vertical_axis, title)

Note the use of axis_type = 'date', axis_date_type = "automatic" in the setting of the horizontal axis. This is a nice feature of Magics that will adjust the labels to show horshours, days, months or years according to the length of the time series. 

Section

Download :

 

 

Now we will add the data. The file count.odb contains the following information.

...

We will first try to create a basic curve considering the date as a integer. 

Section
Column
width350px

Image RemovedImage Added

Column
width70%
Code Block
languagepy
titleSetting the time series Plotting quickly the data from a numpy array
collapsetrue
# importing Magics module
import Magics.macro as magics

#First we read the ODB in a numpay array
# importing ODB
import odb
import numpy

odb = numpy.array([r[:] for r in
               odb.sql("select date@hdr, series from '%s'"
               % 'count.odb')])

dates = odb[:, 0]
count = odb[:, 1]

# Setting of the output file name
output = magics.output(output_formats=['png'],
                output_name_first_page_number='off',
                output_name='odb_graph2')


# Define the cartesian projection
map = magics.mmap(subpage_map_projection = "cartesian",
                  subpage_x_axis_type = 'regular',
                  subpage_y_axis_type = 'regular',
                  subpage_x_automatic = 'on',
                  subpage_y_automatic = 'on',
                  )
#define the axis
horizontal_axis = magics.maxis(axis_orientation = "horizontal",
                               axis_type = 'regular',
                               axis_date_type = "automatic",
                               axis_grid = "on",
                               axis_grid_line_style = "solid",
                               axis_grid_thickness = 1,
                               axis_grid_colour = "grey",
                               axis_minor_tick ='on',
                               axis_minor_grid ='on',
                               axis_minor_grid_line_style = "dot",
                               axis_minor_grid_colour = "grey",
                               axis_title = 'on',
                               axis_title_text = "Time...",

                               )
vertical_axis = magics.maxis(axis_orientation = "vertical",
                               axis_grid = "on",
                               axis_grid_line_style = "solid",
                               axis_grid_thickness = 1,
                               axis_grid_colour = "grey",
                            )

data = magics.minput(input_x_values = dates, input_y_values = count)
graph = magics.mgraph(graph_line_colour="evergreen")
#Add a text
title = magics.mtext(text_lines=['Adding the data to the time series'])

# Execute the plot.
magics.plot(output, map, horizontal_axis, vertical_axis, data, graph, title)

Note that we have now set subpage_x_axis_type to  regular and subpage_x_automatic = on. This will not interpret the date as a date but as a integer, and will use the min and max of the data to setup the limits of the projection. It is not the plot we really want, but it shows quickly your data. gives a quick overview.

Section

Download :

 

Let's nterpret Now we will interpret the date as date, and the time series should be fine.

Section

 

 

Column
width350px

Image RemovedImage Added

Column
width70%
Code Block
languagepy
titleSetting Interpreting the time series date
collapsetrue
# importing Magics module
import Magics.macro as magics

#First we read the ODB in a numpay array
# importing ODB
import odb
import numpy
import datetime

odb = numpy.array([r[:] for r in
               odb.sql("select date@hdr, series from '%s'"
               % 'count.odb')])

dates = odb[:, 0]
count = odb[:, 1]

#Now we convert the date to the ISO date Format that Magics can understand.
dates =  map(lambda x : datetime.datetime.strptime("%s" % x, "%Y%m%d.0"), dates)
dates =  map(lambda x : x.strftime("%Y-%m-%d %H:%M"), dates)


# Setting of the output file name
output = magics.output(output_formats=['png'],
                output_name_first_page_number='off',
                output_name='odb_graph3')



# Define the cartesian projection
map = magics.mmap(subpage_map_projection = "cartesian",
                  subpage_x_axis_type = 'date',
                  subpage_y_axis_type = 'regular',
                  subpage_x_automatic = 'on',
                  subpage_y_automatic = 'on',
                  )
#define the axis
horizontal_axis = magics.maxis(axis_orientation = "horizontal",
                               axis_type = 'date',
                               axis_date_type = "automatic",
                               axis_grid = "on",
                               axis_grid_line_style = "solid",
                               axis_grid_thickness = 1,
                               axis_grid_colour = "grey",
                               axis_minor_tick ='on',
                               axis_minor_grid ='on',
                               axis_minor_grid_line_style = "dot",
                               axis_minor_grid_colour = "grey",
                               axis_title = 'on',
                               axis_title_text = "Time...",

                               )
vertical_axis = magics.maxis(axis_orientation = "vertical",
                               axis_grid = "on",
                               axis_grid_line_style = "solid",
                               axis_grid_thickness = 1,
                               axis_grid_colour = "grey",
                            )
data = magics.minput(input_x_type = "date",
                input_date_x_values = dates, 
                input_y_values = count
                )
graph = magics.mgraph(graph_line_colour="evergreen")
#Add a text
title = magics.mtext(text_lines=['Adding the data to the time series'])

# Execute the plot.
magics.plot(output, map, horizontal_axis, vertical_axis, data, graph, title)
 
            
Section

Download :

In

...

the

...

example

...

we

...

are

...

using

...

numpy

...

array

...

to

...

manipulate

...

the

...

ODB,

...

this

...

gives

...

all

...

the

...

computations

...

facilities. 

...

Once

...

done,

...

the

...

result

...

can

...

just

...

be

...

passed

...

to

...

Magics

...

using

...

through

...

a

...

numpy

...

array.

...