Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Confirmed.
Panel
titleVisualising ODB in Magics

There are several ways on visualisating ODB data in Magics.

  • use the ODB Magics objects. This allows Magics to read a odb file and extract some columns for geographical plots or graph.
  • In python, it also possible to use odb_api packages to create a numpy array and pass the values in memeoty to Magics. magics is then able to perform symbol plotting on a geographical area, time series, etc .. 

This page will present presents examples of these different plottingsvisualisation, and will offer offers skeletons of python programs.

Table of Contents

 

To run the example at ECMWF:

  • download python scripts and data
  • module load Magics/new
  • module load odb_api

 

Using an ODB file and create a geographical map

...

Section

 

 

Column
width350px

Column
width70%
Code Block
languagepy
titleSimple symbol plotting
collapsetrue
# importing Magics module
from Magics.macro import *

# Setting of the output file name
output = output(output_formats=['png'],
                output_name_first_page_number='off',
                output_name="odb_step1")

# Background Coastlines
background = mcoast(
    map_coastline_sea_shade_colour='white',
    map_coastline_land_shade_colour='cream',
    map_grid='on',
    map_coastline_land_shade='on',
    map_coastline_sea_shade='on',
    map_label='on',
    map_coastline_colour='tan',
    )
# Import odb data
odb = odb_geopoints(odb_filename='geo.odb',
                    odb_latitude_variable='lat@hdr',
                    odb_longitude_variable='lon@hdr',
                    )
# Define the symbol plotting
symbol = msymb(symbol_type='marker',
               symbol_colour='navy',
               symbol_marker_index=3,
               symbol_height=0.4,
            )
# Add a title 
lines = ['Using odb...', 
         'select lat@hdr, lon@hdr, obsvalue@body where (source=\'ispdv2.2\') and (varno=110)',
         ]

title = mtext(
    text_lines=lines,
    text_justification='left',
    text_font_size=0.7,
    text_colour='charcoal',
)

#Create the plot
plot(output, background, odb, symbol, title)
Section

Download :

 

Now, we are going to colour the symbol according to the value of the observation. The advanced mode for symbol plotting offers an easy way to specify range and colours, we add a legend for readability.

Section
Column
width350px

Image RemovedImage Added

Column
width70%
Code Block
languagepy
titleAdvanced symbol plotting
collapsetrue
# importing Magics module
from Magics.macro import *

# Setting of the output file name
output = output(output_formats=['png'],
                output_name_first_page_number='off',
                output_name='odb_step2')

# Background Coastlines
background = mcoast(
    map_coastline_sea_shade_colour='white',
    map_coastline_land_shade_colour='cream',
    map_grid='on',
    map_coastline_land_shade='on',
    map_coastline_sea_shade='on',
    map_label='on',
    map_coastline_colour='tan',
    )

# Import odb data
odb = odb_geopoints(odb_filename='geo.odb',
                    odb_latitude_variable='lat@hdr',
                    odb_longitude_variable='lon@hdr',
                    odb_value_variable='obsvalue@body',
                    )

# Define the symbol plotting
symbol = msymb(symbol_type='marker',
               symbol_colour='navy',
               symbol_advanced_table_selection_type='list',
               symbol_advanced_table_level_list=[50000., 75000., 90000., 100000., 
							100500., 101000., 101500., 102000., 102500., 103000., 
							103500., 104000., 105000.],
               symbol_advanced_table_min_level_colour='blue',
               symbol_advanced_table_max_level_colour='red',
               symbol_advanced_table_colour_direction='clockwise',
               symbol_table_mode='advanced',
               legend='on'
               )
#Adding some text
lines = ['Using odb colouring the sumbol according to the value of the observation...', 
         'select lat@hdr, lon@hdr, obsvalue@body where (source=\'ispdv2.2\') and (varno=110)',]

title = mtext(
    text_lines=lines,
    text_html='true',
    text_justification='left',
    text_font_size=0.7,
    text_colour='charcoal',
    )

#adding some legend
legend = mlegend(legend='on', legend_text_colour='navy',
                 legend_display_type='continuous')


#Create the plot
plot(output, background, odb, symbol, title,legend)

Create a time series

...

Section
column

Download :

Loading the data into a numpy array and passing them to Magics

 

Note the facilities offered by numpy to perform some computations and the histogram legend facilities of Magics.

Section
width350px

Image Removed

Column
width350px

Image Added

Column
width70%
Code Block
languagepy
titleAdvanced symbol plottingUsing numpy array
collapsetrue
 
# importing Magics module
from Magics.macro import *

# Setting of the output file name
output = output(output_formats=['png'],#Loading ODB in a numpy array
import odb
import numpy
import datetime

odb = numpy.array([r[:] for r in
               odb.sql("select  output_name_first_page_number='off',lat@hdr, lon@hdr, obsvalue@body from '%s'"
               % output_name='geo.odb_step2')])

# Background Coastlines
background = mcoast(
    map_coastline_sea_shade_colour='white',
    map_coastline_land_shade_colour='cream',
    map_grid='on',
    map_coastline_land_shade='on',lat = odb[:, 0]
lon = odb[:, 1]
#Here we convert the values from Pascal to HectoPascal.
values = odb[:, 2]/100

# Setting of the output file name
output = output(output_formats=['png'],
                output_name_first_page_number='off',
                output_name='odb_step3')



# Background Coastlines
background = mcoast(
    map_coastline_sea_shade_colour='onwhite',
    map_label='oncoastline_land_shade_colour='cream',
    map_coastline_colourgrid='tanon',
    )

# Import odb data
odb = odb_geopoints(odb_filename='geo.odbmap_coastline_land_shade='on',
    map_coastline_sea_shade='on',
    map_label='on',
    map_coastline_colour='tan',
    )

#Set the input  data
input    odb= minput(input_latitude_variablevalues='lat@hdr'lat,
                    odbinput_longitude_variablevalues='lon@hdr'lon,
                    odb_value_variable='obsvalue@body',
                    input_values=values)

# Define the symbol plotting
symbol = msymb(symbol_type='marker',
               symbol_colour='navy',
               symbol_advanced_table_selection_type='listinterval',
               symbol_advanced_table_level_list=[50000interval=5.,
  75000., 90000., 100000., 
							100500., 101000., 101500., 102000., 102500., 103000., 
							103500., 104000., 105000.],
               symbol_advanced_table_min_level_colour='blue',
               symbol_advanced_table_max_level_colour='red',
               symbol_advanced_table_colour_direction='clockwise',
               symbol_table_mode='advanced',
               legend='on'
               )
#Adding some text
lines = ['Using odb colouring the sumbol according to the value of the observation...', 
"select lat@hdr, lon@hdr, obsvalue@body      'select lat@hdr, lon@hdr, obsvalue@body where (where (source='ispdv2.2') and (varno=110)",
         '<magics_title/>']

title = mtext(
    text_lines=lines,
    text_html='true',
    text_justification='left',
    text_font_size=0.7,
    text_colour='charcoal',
    )

#adding some legend
legend = mlegend(legend='on', legend_text_colour='navy',
                 legend_display_type='continuous'histogram',
                 legend_label_frequency=5)


#Create the plot
plot(output, background, odbinput, symbol, title,legend)

Section

Download :

Creating a time series from an ODB data.

In this example, we will first setup a cartesian projection for the time series: the x axis will show the date from January 2005 to December 2010, and the y axis will represent the number of observation for each day, i.e. a range from 0 to 1000. 

This plot needs the creation of 3 Magics objects a mmap to describe the projection and 2 axis to specify labels, ticks and other attributes. 

The plot command will create a png showing the projection represented by the 2 axis. 

 

Section
Column
width350px

Image Added

Column
width70%
Code Block
languagepy
titleSetting the time series
collapsetrue
# importing Magics module
import Magics.macro as magics


# Setting of the output file name
output = magics.output(output_formats=['png'],
                output_name_first_page_number='off',
                output_name='odb_graph1')



# Define the cartesian projection
map = magics.mmap(subpage_map_projection = "cartesian",
                  subpage_x_axis_type = 'date',
                  subpage_y_axis_type = 'regular',
                  subpage_x_date_min = '2005-01-01',
                  subpage_x_date_max = '2010-12-31',
                  subpage_y_min = 0.,
                  subpage_y_max = 1000.,
                  subpage_y_position = 5.)
#define the axis
horizontal_axis = magics.maxis(axis_orientation = "horizontal",
                               axis_type = 'date',
                               axis_date_type = "automatic",
                               axis_grid = "on",
                               axis_grid_line_style = "solid",
                               axis_grid_thickness = 1,
                               axis_grid_colour = "grey",
                               axis_minor_tick ='on',
                               axis_minor_grid ='on',
                               axis_minor_grid_line_style = "dot",
                               axis_minor_grid_colour = "grey",
                               axis_title = 'on',
                               axis_title_text = "Time...",

                               )
vertical_axis = magics.maxis(axis_orientation = "vertical",
                               axis_grid = "on",
                               axis_grid_line_style = "solid",
                               axis_grid_thickness = 1,
                               axis_grid_colour = "grey",
                            )
#Add a text
title = magics.mtext(text_lines=['Preparing the time series'])

# Execute the plot.
magics.plot(output, map, horizontal_axis, vertical_axis, title)

Note the use of axis_type = 'date', axis_date_type = "automatic" in the setting of the horizontal axis. This is a nice feature of Magics that will adjust the labels to show hours, days, months or years according to the length of the time series. 

Section

Download :

 

 

Now we will add the data. The file count.odb contains the following information.

Code Block
titleodb ls count.odb
date@hdr	series	
20041231	7124.000000	
20050101	112191.000000	
20050102	117146.000000	
20050103	118529.000000	
20050104	115592.000000	
20050105	115085.000000	
20050106	112501.000000	
20050107	116017.000000	
20050108	118702.000000	
20050109	117507.000000	
20050110	119497.000000	

We will first try to create a basic curve considering the date as a integer. 

Section
Column
width350px

Image Added

Column
width70%
Code Block
languagepy
titlePlotting quickly the data from a numpy array
collapsetrue
# importing Magics module
import Magics.macro as magics

#First we read the ODB in a numpay array
# importing ODB
import odb
import numpy

odb = numpy.array([r[:] for r in
               odb.sql("select date@hdr, series from '%s'"
               % 'count.odb')])

dates = odb[:, 0]
count = odb[:, 1]

# Setting of the output file name
output = magics.output(output_formats=['png'],
                output_name_first_page_number='off',
                output_name='odb_graph2')


# Define the cartesian projection
map = magics.mmap(subpage_map_projection = "cartesian",
                  subpage_x_axis_type = 'regular',
                  subpage_y_axis_type = 'regular',
                  subpage_x_automatic = 'on',
                  subpage_y_automatic = 'on',
                  )
#define the axis
horizontal_axis = magics.maxis(axis_orientation = "horizontal",
                               axis_type = 'regular',
                               axis_date_type = "automatic",
                               axis_grid = "on",
                               axis_grid_line_style = "solid",
                               axis_grid_thickness = 1,
                               axis_grid_colour = "grey",
                               axis_minor_tick ='on',
                               axis_minor_grid ='on',
                               axis_minor_grid_line_style = "dot",
                               axis_minor_grid_colour = "grey",
                               axis_title = 'on',
                               axis_title_text = "Time...",

                               )
vertical_axis = magics.maxis(axis_orientation = "vertical",
                               axis_grid = "on",
                               axis_grid_line_style = "solid",
                               axis_grid_thickness = 1,
                               axis_grid_colour = "grey",
                            )

data = magics.minput(input_x_values = dates, input_y_values = count)
graph = magics.mgraph(graph_line_colour="evergreen")
#Add a text
title = magics.mtext(text_lines=['Adding the data to the time series'])

# Execute the plot.
magics.plot(output, map, horizontal_axis, vertical_axis, data, graph, title)

Note that we have now set subpage_x_axis_type to  regular and subpage_x_automatic = on. This will not interpret the date as a date but as a integer, and will use the min and max of the data to setup the limits of the projection. It is not the plot we really want, but it gives a quick overview.

Section

Download :

 

Let's nterpret the date as date, and the time series should be fine.

Section

 

 

Column
width350px

Image Added

Column
width70%
Code Block
languagepy
titleInterpreting the date
collapsetrue
# importing Magics module
import Magics.macro as magics

#First we read the ODB in a numpay array
# importing ODB
import odb
import numpy
import datetime

odb = numpy.array([r[:] for r in
               odb.sql("select date@hdr, series from '%s'"
               % 'count.odb')])

dates = odb[:, 0]
count = odb[:, 1]

#Now we convert the date to the ISO date Format that Magics can understand.
dates =  map(lambda x : datetime.datetime.strptime("%s" % x, "%Y%m%d.0"), dates)
dates =  map(lambda x : x.strftime("%Y-%m-%d %H:%M"), dates)


# Setting of the output file name
output = magics.output(output_formats=['png'],
                output_name_first_page_number='off',
                output_name='odb_graph3')



# Define the cartesian projection
map = magics.mmap(subpage_map_projection = "cartesian",
                  subpage_x_axis_type = 'date',
                  subpage_y_axis_type = 'regular',
                  subpage_x_automatic = 'on',
                  subpage_y_automatic = 'on',
                  )
#define the axis
horizontal_axis = magics.maxis(axis_orientation = "horizontal",
                               axis_type = 'date',
                               axis_date_type = "automatic",
                               axis_grid = "on",
                               axis_grid_line_style = "solid",
                               axis_grid_thickness = 1,
                               axis_grid_colour = "grey",
                               axis_minor_tick ='on',
                               axis_minor_grid ='on',
                               axis_minor_grid_line_style = "dot",
                               axis_minor_grid_colour = "grey",
                               axis_title = 'on',
                               axis_title_text = "Time...",

                               )
vertical_axis = magics.maxis(axis_orientation = "vertical",
                               axis_grid = "on",
                               axis_grid_line_style = "solid",
                               axis_grid_thickness = 1,
                               axis_grid_colour = "grey",
                            )
data = magics.minput(input_x_type = "date",
                input_date_x_values = dates, 
                input_y_values = count
                )
graph = magics.mgraph(graph_line_colour="evergreen")
#Add a text
title = magics.mtext(text_lines=['Adding the data to the time series'])

# Execute the plot.
magics.plot(output, map, horizontal_axis, vertical_axis, data, graph, title)
 
            
Section

Download :

In the example we are using numpy array to manipulate the ODB, this gives all the computations facilities. Once done, the result can just be passed to Magics using through a numpy array.