This page describes the Brazilian Wigos test case. The goal was to encode the input data into a BUFR file including the Wigos information.
The input data was kindly provided by Jose Mauro Rezende from INMET. This data consisted in several
records in csv format.
A806 | 2018 | 9 | 18 | 0 | 12.8 | 20 | -48.6 | -27.6 | 4.87 | 19 | 19 | 18.9 | 91 | 91 | 91 | 17.5 | 17.5 | 17.5 | 1011.1 | 1011.1 | 1011 | 0.6 | 20 | 2.9 | -0.255 | 0 | / | //// | ///// | ///// | = |
A765 | 2018 | 9 | 18 | 0 | 12.6 | 22 | -46.14 | -23.84 | 5 | 20.2 | 20.5 | 20.2 | 93 | 94 | 91 | 19.1 | 19.2 | 18.9 | 1011.7 | 1011.8 | 1011.6 | 0.7 | 324 | 1.3 | -1.057 | 0 | / | //// | ///// | ///// | = |
A907 | 2018 | 9 | 18 | 0 | 12.5 | 28 | -54.6 | -16.5 | 289.8 | 26.2 | 26.2 | 25.6 | 77 | 78 | 74 | 21.8 | 21.8 | 21.1 | 979.1 | 979.1 | 977.4 | 1.4 | 296 | 2.4 | -3.378 | 0 | / | //// | ///// | ///// | = |
A305 | 2018 | 9 | 18 | 0 | 12.3 | 28 | -38.5 | -3.1 | 29.55 | 26.2 | 26.3 | 26.1 | 69 | 72 | 69 | 20.1 | 20.7 | 20.1 | 1009.6 | 1009.6 | 1008.8 | 2.8 | 105 | 7.7 | -3.54 | 0 | / | //// | ///// | ///// | = |
A450 | 2018 | 9 | 18 | 0 | 12.5 | 28 | -38.3 | -10.08 | 261 | 24.9 | 25.7 | 24.9 | 67 | 67 | 62 | 18.3 | 18.3 | 17.9 | 985 | 985 | 984.1 | 4.1 | 111 | 10.7 | -3.143 | 0 | / | //// | ///// | ///// | = |
A025 | 2018 | 9 | 18 | 0 | 12.3 | 21 | -50.96 | -17.78 | 780.1 | 19.2 | 19.5 | 19.2 | 87 | 88 | 85 | 17 | 17.3 | 16.9 | 927.5 | 927.5 | 926.7 | 2.6 | 70 | 3.5 | -3.498 | 0 | / | //// | ///// | ///// | = |
Jose Mauro also provided the following excel file containing the metadata giving the meaning of each column of the previous file.
DATE | HOUR | TENS | TEMP | AIR TEMP. | RELATIVE UMID | DEW POINT | PRESSURE | WINDS | CLOUD COVER | |||||||||||||||||||
STATION | YEAR | MON | DAY | OBS. | BAT | CPU | INST. | MAX | MIN | INST | MAX | MIN | INST | MAX | MIN | INST | MAX | MIN | Speed | Dir | Gust | RAD | PREC | TOT | CODE | BASE | VISIB | |
UTC | V | ºC | ºC | ºC | ºC | % | % | % | ºC | ºC | ºC | hPa | hPa | hPa | m/s | º | m/s | kJ/m2 | mm | |||||||||
A001 | 2000 | 7 | 1 | 0 | 12.5 | 22 | 19.6 | 20.7 | 19.5 | 45 | 45 | 40 | 7.2 | 7.5 | 6.6 | 889.1 | 889.1 | 888.8 | 1.6 | 113 | 4.0 | -4 | 0.0 | / | //// | ///// | ///// | = |
A001 | 2000 | 7 | 1 | 1 | 12.5 | 21 | 20.1 | 20.2 | 19.7 | 39 | 47 | 39 | 5.8 | 8.1 | 5.8 | 889.4 | 889.4 | 889.1 | 2.2 | 71 | 4.5 | -4 | 0.0 | / | //// | ///// | ///// | = |
A001 | 2000 | 7 | 1 | 2 | 12.5 | 21 | 19.6 | 20.2 | 19.6 | 36 | 39 | 36 | 4.3 | 5.8 | 4.3 | 889.3 | 889.4 | 889.3 | 2.3 | 75 | 4.0 | -4 | 0.0 | / | //// | ///// | ///// | = |
A001 | 2000 | 7 | 1 | 3 | 12.5 | 21 | 18.3 | 19.7 | 18.3 | 43 | 43 | 36 | 5.5 | 5.5 | 4.2 | 889.0 | 889.3 | 889.0 | 1.5 | 78 | 4.1 | -4 | 0.0 | / | //// | ///// | ///// | = |
CODIGOS | SIM | I101 | I608 | I612 | I105 | I617 | I618 | I103 | I613 | I614 | I106 | I615 | I616 | I111 | I113 | I608 | I133 | I175 | I118 | I110 | ||||||||
ESTAÇÃO = Mnnn | M=Organização | xnn = sequencial | Primeiro digito x=Distrito, nn=sequencial de instalação em cada Distrito | |||||||||||||||||||||||||
YEAR MONTH DAY HOUR | (HOUR UTC) | |||||||||||||||||||||||||||
BATERY VOLTAGE | ||||||||||||||||||||||||||||
CPU TEMPERATURE | ||||||||||||||||||||||||||||
AIR TEMPERATURE | INSTANTANEOUS, MAXIMA and MINIMA | |||||||||||||||||||||||||||
RELATIVE HUMIDITY | INSTANTANEOUS, MAXIMA and MINIMA | |||||||||||||||||||||||||||
DEW POINT | INSTANTANEOUS, MAXIMA and MINIMA | |||||||||||||||||||||||||||
PRESSURE | INSTANTANEOUS, MAXIMA and MINIMA | |||||||||||||||||||||||||||
WINDS | DIREÇÃO, VELOCIDADE E RAJADA | |||||||||||||||||||||||||||
SOLAR RADIATION | ||||||||||||||||||||||||||||
PRECIPITATION | ||||||||||||||||||||||||||||
CLOUD COVER | TOTAL, CODE and CLOUD BASE (Manually inserted on the station via keyboard) | |||||||||||||||||||||||||||
VISIBILITY |
To achieve this goal, the SYNOP template 307091 was used from the current messages like ISAI01-SBBR-041400-RRA.bfr and added the sequence 301150 that contains the
Wigos information.
The script code follows
#!/usr/bin/env python ''' # Copyright 2005-2018 ECMWF. # This software is licensed under the terms of the Apache Licence Version 2.0 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation # nor does it submit to any jurisdiction This is a test program to encode Wigos Synop requires 1) ecCodes version 2.8 or above (available at https://confluence.ecmwf.int/display/ECC/Releases) 2) python2.7 To run the program ./test_wigos4.py -a Ascii_csv_file -b output_Bufr Uses BUFR version 4 template 301150 307091 Author : Roberto Ribas Garcia ECMWF 27 Sep 2018 ''' from eccodes import (codes_set, codes_set_array, codes_bufr_new_from_samples,codes_write,codes_get_api_version, codes_release, CodesInternalError,CODES_MISSING_DOUBLE,CODES_MISSING_LONG) import pandas as pd from datetime import datetime import argparse def read_cmdline(): ''' reads the command line to get the input ascii filename and the output bufr file usage prog -a Ascii_input_file -b Bufr_output_file ''' p=argparse.ArgumentParser() p.add_argument("-a","--ascii",help=" input Ascii filename") p.add_argument("-b","--bufr", help="output Bufr filename") args=p.parse_args() return args def read_ascii(inputFilename): ''' function to read the Ascii data into a pandas dataframe, args: inputFilename : full path of the Ascii file for example /tmp/data/rema_20180918.txt uses white spaces as column delimiters index_col=False avoids using the first column (Station) as index names is the list of names from the excel it can be changed but this affects the dataframe ''' df=pd.read_csv(inputFilename,header=None,index_col=False,delim_whitespace=True,names=["station","year","month","day", "ObsHour","TensBat","TempCpu","lon","lat","hp","airTinst","airTmax", "airTmin","relHinst","relHmax","relHmin","dewPInst","dewPmax","dewPmin" , "PresInst","PresMax","PresMin","WindSpeed","WindDir","WindGust", "Rad","Precip","CloudCoverTot","CloudCODE","CloudBase","Visib"]) print df.head() return df def message_encoding(FullInputFileName,fout): ''' Message encoding function FullInputFilename : full path of the Ascii file for example /tmp/data/rema_20180918.txt fout : file Object to write the output bufr file( obtained by a call to open ) Requires ecCodes and the BUFR4_local template on ECCODES_PATH/share/eccodes/samples ''' TEMPLATE='BUFR4_local' # reads the Ascii file into a pandas Dataframe dfFull=read_ascii(FullInputFileName) # loops over the rows of the dataFrame dfFull for _,row in dfFull.iterrows(): bid=codes_bufr_new_from_samples(TEMPLATE) try: bufr_encode_new(bid,row) codes_write(bid,fout) except CodesInternalError as ec: print ec codes_release(bid) def bufr_encode_new(ibufr,row): ''' encodes the new SYNO 307091 adding the 1125, 1126, 1127, 1128 wigos keys before. ''' ivalues = ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ,) codes_set_array(ibufr, 'inputShortDelayedDescriptorReplicationFactor', ivalues) codes_set(ibufr, 'edition', 4) codes_set(ibufr, 'masterTableNumber', 0) codes_set(ibufr, 'bufrHeaderCentre', 98) codes_set(ibufr, 'bufrHeaderSubCentre', 0) codes_set(ibufr, 'updateSequenceNumber', 0) codes_set(ibufr, 'dataCategory', 0) codes_set(ibufr, 'internationalDataSubCategory', 255) codes_set(ibufr, 'dataSubCategory', 170) codes_set(ibufr, 'masterTablesVersionNumber', 29) codes_set(ibufr, 'localTablesVersionNumber', 0) # set the YMD codes_set(ibufr, 'typicalYear', row["year"]) codes_set(ibufr, 'typicalMonth', row["month"]) codes_set(ibufr, 'typicalDay', row["day"]) codes_set(ibufr, 'typicalHour', row["ObsHour"]) codes_set(ibufr, 'typicalMinute', 0) codes_set(ibufr, 'typicalSecond', 0) # Encodes the Section 2 of the BUFR used internally at ECMWF (start here) codes_set(ibufr, 'rdbType', 1) codes_set(ibufr, 'oldSubtype', 176) codes_set(ibufr, 'localYear', row["year"]) codes_set(ibufr, 'localMonth', row["month"]) codes_set(ibufr, 'localDay', row["day"]) codes_set(ibufr, 'localHour', row["ObsHour"]) codes_set(ibufr, 'localMinute', 0) codes_set(ibufr, 'localSecond', 0) procTime=datetime.now() codes_set(ibufr, 'rdbtimeDay', procTime.day) codes_set(ibufr, 'rdbtimeHour', procTime.hour) codes_set(ibufr, 'rdbtimeMinute', procTime.minute) codes_set(ibufr, 'rdbtimeSecond', procTime.second) codes_set(ibufr, 'rectimeDay', procTime.day ) codes_set(ibufr, 'rectimeHour', procTime.hour) codes_set(ibufr, 'rectimeMinute', procTime.minute) codes_set(ibufr, 'rectimeSecond', procTime.second) codes_set(ibufr, 'correction1', 0) codes_set(ibufr, 'correction1Part', 0) codes_set(ibufr, 'correction2', 0) codes_set(ibufr, 'correction2Part', 0) codes_set(ibufr, 'correction3', 0) codes_set(ibufr, 'correction3Part', 0) codes_set(ibufr, 'correction4', 0) codes_set(ibufr, 'correction4Part', 0) codes_set(ibufr, 'qualityControl', 70) codes_set(ibufr, 'newSubtype', 0) codes_set(ibufr, 'numberOfSubsets', 1) lat=row["lat"] lon=row["lon"] codes_set(ibufr, 'localLatitude', lat) codes_set(ibufr, 'localLongitude', lon) #### End of encoding local section 2 codes_set(ibufr, 'observedData', 1) codes_set(ibufr, 'compressedData', 0) ivalues=(301150,307091) codes_set_array(ibufr, 'unexpandedDescriptors', ivalues) codes_set(ibufr, 'wigosIdentifierSeries',0 ) codes_set(ibufr, 'wigosIssuerOfIdentifier', 76) codes_set(ibufr, 'wigosIssueNumber', 0) codes_set(ibufr, 'wigosLocalIdentifierCharacter','0760999999999') codes_set(ibufr, 'stateIdentifier', CODES_MISSING_LONG) codes_set(ibufr, 'nationalStationNumber', CODES_MISSING_LONG) codes_set(ibufr, 'blockNumber', CODES_MISSING_LONG) codes_set(ibufr, 'stationNumber', CODES_MISSING_LONG) codes_set(ibufr, 'stationOrSiteName',row["station"]) codes_set(ibufr, 'stationType', CODES_MISSING_LONG) codes_set(ibufr, 'year', row["year"]) codes_set(ibufr, 'month', row["month"]) codes_set(ibufr, 'day', row["day"]) codes_set(ibufr, 'hour', row["ObsHour"]) codes_set(ibufr, 'minute', 0) codes_set(ibufr, 'latitude', lat) codes_set(ibufr, 'longitude', lon) height=row["hp"] codes_set(ibufr, 'heightOfStationGroundAboveMeanSeaLevel', height) codes_set(ibufr, 'heightOfBarometerAboveMeanSeaLevel', 1.5) codes_set(ibufr, 'surfaceQualifierForTemperatureData', CODES_MISSING_LONG) codes_set(ibufr, 'mainPresentWeatherDetectingSystem', CODES_MISSING_LONG) codes_set(ibufr, 'supplementaryPresentWeatherSensor', CODES_MISSING_LONG) codes_set(ibufr, 'visibilityMeasurementSystem', CODES_MISSING_LONG) codes_set(ibufr, 'cloudDetectionSystem', CODES_MISSING_LONG) codes_set(ibufr, 'lightningDetectionSensorType', CODES_MISSING_LONG) codes_set(ibufr, 'skyConditionAlgorithmType', CODES_MISSING_LONG) codes_set(ibufr, 'capabilityToDetectPrecipitationPhenomena', CODES_MISSING_LONG) codes_set(ibufr, 'capabilityToDetectOtherWeatherPhenomena', CODES_MISSING_LONG) codes_set(ibufr, 'capabilityToDetectObscuration', CODES_MISSING_LONG) codes_set(ibufr, 'capabilityToDiscriminateLightningStrikes', CODES_MISSING_LONG) codes_set(ibufr, '#1#nonCoordinatePressure', CODES_MISSING_DOUBLE) pressure=row["PresInst"]*100 codes_set(ibufr, 'pressureReducedToMeanSeaLevel', pressure) codes_set(ibufr, '3HourPressureChange', CODES_MISSING_DOUBLE) codes_set(ibufr, 'characteristicOfPressureTendency', CODES_MISSING_LONG) codes_set(ibufr, 'pressure', pressure) codes_set(ibufr, 'nonCoordinateGeopotentialHeight', CODES_MISSING_LONG) codes_set(ibufr, '#1#heightOfSensorAboveLocalGroundOrDeckOfMarinePlatform', CODES_MISSING_DOUBLE) codes_set(ibufr, '#1#heightOfSensorAboveWaterSurface', CODES_MISSING_DOUBLE) temperature=row["airTinst"]+273.15 codes_set(ibufr, '#1#airTemperature', temperature) dewPoint=row["dewPInst"]+273.15 codes_set(ibufr, 'dewpointTemperature', dewPoint) codes_set(ibufr, '#1#relativeHumidity', row["relHinst"]) codes_set(ibufr, '#1#depthBelowLandSurface', CODES_MISSING_DOUBLE) codes_set(ibufr, '#1#soilTemperature', CODES_MISSING_DOUBLE) codes_set(ibufr, '#2#depthBelowLandSurface', CODES_MISSING_DOUBLE) codes_set(ibufr, '#2#soilTemperature', CODES_MISSING_DOUBLE) codes_set(ibufr, '#3#depthBelowLandSurface', CODES_MISSING_DOUBLE) codes_set(ibufr, '#3#soilTemperature', CODES_MISSING_DOUBLE) codes_set(ibufr, '#4#depthBelowLandSurface', CODES_MISSING_DOUBLE) codes_set(ibufr, '#4#soilTemperature', CODES_MISSING_DOUBLE) codes_set(ibufr, '#5#depthBelowLandSurface', CODES_MISSING_DOUBLE) codes_set(ibufr, '#5#soilTemperature', CODES_MISSING_DOUBLE) codes_set(ibufr, '#6#depthBelowLandSurface', CODES_MISSING_DOUBLE) codes_set(ibufr, '#2#heightOfSensorAboveLocalGroundOrDeckOfMarinePlatform', CODES_MISSING_DOUBLE) codes_set(ibufr, '#2#heightOfSensorAboveWaterSurface', CODES_MISSING_DOUBLE) codes_set(ibufr, '#1#attributeOfFollowingValue', CODES_MISSING_LONG) if row["Visib"]=="/////": visib=CODES_MISSING_DOUBLE else: visib=row["Visib"] codes_set(ibufr, 'horizontalVisibility', visib) codes_set(ibufr, '#3#heightOfSensorAboveLocalGroundOrDeckOfMarinePlatform', CODES_MISSING_DOUBLE) codes_set(ibufr, '#3#heightOfSensorAboveWaterSurface', CODES_MISSING_DOUBLE) codes_set(ibufr, 'iceDepositThickness', CODES_MISSING_DOUBLE) codes_set(ibufr, 'rateOfIceAccretionEstimated', CODES_MISSING_LONG) codes_set(ibufr, 'methodOfWaterTemperatureAndOrOrSalinityMeasurement', CODES_MISSING_LONG) codes_set(ibufr, 'oceanographicWaterTemperature', CODES_MISSING_DOUBLE) codes_set(ibufr, 'wavesDirection', CODES_MISSING_LONG) codes_set(ibufr, 'periodOfWaves', CODES_MISSING_LONG) codes_set(ibufr, 'heightOfWaves', CODES_MISSING_DOUBLE) codes_set(ibufr, 'methodOfStateOfGroundMeasurement', CODES_MISSING_LONG) codes_set(ibufr, 'stateOfGround', CODES_MISSING_LONG) codes_set(ibufr, 'methodOfSnowDepthMeasurement', CODES_MISSING_LONG) codes_set(ibufr, 'totalSnowDepth', CODES_MISSING_DOUBLE) if row["CloudCoverTot"]=="/": CloudCover=CODES_MISSING_LONG else: CloudCover=row["CloudCoverTot"] codes_set(ibufr, 'cloudCoverTotal', CloudCover) codes_set(ibufr, '#1#verticalSignificanceSurfaceObservations', CODES_MISSING_LONG) codes_set(ibufr, '#1#cloudAmount', CODES_MISSING_LONG) codes_set(ibufr, '#1#cloudType', CODES_MISSING_LONG) codes_set(ibufr, '#2#attributeOfFollowingValue', CODES_MISSING_LONG) codes_set(ibufr, '#1#heightOfBaseOfCloud', CODES_MISSING_DOUBLE) codes_set(ibufr, '#2#verticalSignificanceSurfaceObservations', CODES_MISSING_LONG) codes_set(ibufr, '#2#cloudAmount', CODES_MISSING_LONG) codes_set(ibufr, '#2#cloudType', CODES_MISSING_LONG) codes_set(ibufr, '#3#attributeOfFollowingValue', CODES_MISSING_LONG) codes_set(ibufr, '#2#heightOfBaseOfCloud', CODES_MISSING_DOUBLE) codes_set(ibufr, '#3#verticalSignificanceSurfaceObservations', CODES_MISSING_LONG) codes_set(ibufr, '#3#cloudAmount', CODES_MISSING_LONG) codes_set(ibufr, '#3#cloudType', CODES_MISSING_LONG) codes_set(ibufr, '#4#attributeOfFollowingValue', CODES_MISSING_LONG) codes_set(ibufr, '#3#heightOfBaseOfCloud', CODES_MISSING_DOUBLE) codes_set(ibufr, '#4#verticalSignificanceSurfaceObservations', CODES_MISSING_LONG) codes_set(ibufr, '#4#cloudAmount', CODES_MISSING_LONG) codes_set(ibufr, '#4#cloudType', CODES_MISSING_LONG) codes_set(ibufr, '#5#attributeOfFollowingValue', CODES_MISSING_LONG) codes_set(ibufr, '#4#heightOfBaseOfCloud', CODES_MISSING_DOUBLE) codes_set(ibufr, 'presentWeather', CODES_MISSING_LONG) codes_set(ibufr, '#1#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, 'pastWeather1', CODES_MISSING_LONG) codes_set(ibufr, 'pastWeather2', CODES_MISSING_LONG) codes_set(ibufr, '#1#timeSignificance', CODES_MISSING_LONG) codes_set(ibufr, '#2#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, 'precipitationIntensityHighAccuracy', CODES_MISSING_DOUBLE) codes_set(ibufr, 'sizeOfPrecipitatingElement', CODES_MISSING_DOUBLE) codes_set(ibufr, '#2#timeSignificance', CODES_MISSING_LONG) codes_set(ibufr, '#3#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, 'precipitationType', CODES_MISSING_LONG) codes_set(ibufr, 'characterOfPrecipitation', CODES_MISSING_LONG) codes_set(ibufr, 'durationOfPrecipitation', CODES_MISSING_LONG) codes_set(ibufr, 'otherWeatherPhenomena', CODES_MISSING_LONG) codes_set(ibufr, 'intensityOfPhenomena', CODES_MISSING_LONG) codes_set(ibufr, 'obscuration', CODES_MISSING_LONG) codes_set(ibufr, 'characterOfObscuration', CODES_MISSING_LONG) codes_set(ibufr, '#4#heightOfSensorAboveLocalGroundOrDeckOfMarinePlatform', CODES_MISSING_DOUBLE) codes_set(ibufr, '#4#heightOfSensorAboveWaterSurface', CODES_MISSING_DOUBLE) codes_set(ibufr, '#3#timeSignificance', CODES_MISSING_LONG) codes_set(ibufr, '#4#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, '#1#windDirection', row["WindDir"]) codes_set(ibufr, '#1#windSpeed', row["WindSpeed"]) codes_set(ibufr, '#4#timeSignificance', CODES_MISSING_LONG) codes_set(ibufr, '#5#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, '#1#maximumWindGustDirection', CODES_MISSING_LONG) codes_set(ibufr, '#1#maximumWindGustSpeed', row["WindGust"]) codes_set(ibufr, '#6#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, '#2#maximumWindGustDirection', CODES_MISSING_LONG) codes_set(ibufr, '#2#maximumWindGustSpeed', CODES_MISSING_DOUBLE) codes_set(ibufr, '#7#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, 'extremeCounterclockwiseWindDirectionOfAVariableWind', CODES_MISSING_LONG) codes_set(ibufr, 'extremeClockwiseWindDirectionOfAVariableWind', CODES_MISSING_LONG) codes_set(ibufr, '#5#heightOfSensorAboveLocalGroundOrDeckOfMarinePlatform', CODES_MISSING_DOUBLE) codes_set(ibufr, '#5#heightOfSensorAboveWaterSurface', CODES_MISSING_DOUBLE) codes_set(ibufr, '#8#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, 'maximumTemperatureAtHeightAndOverPeriodSpecified', CODES_MISSING_DOUBLE) codes_set(ibufr, '#1#minimumTemperatureAtHeightAndOverPeriodSpecified', CODES_MISSING_DOUBLE) codes_set(ibufr, '#6#heightOfSensorAboveLocalGroundOrDeckOfMarinePlatform', CODES_MISSING_DOUBLE) codes_set(ibufr, '#9#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, '#2#minimumTemperatureAtHeightAndOverPeriodSpecified', CODES_MISSING_DOUBLE) codes_set(ibufr, '#6#heightOfSensorAboveWaterSurface', CODES_MISSING_DOUBLE) codes_set(ibufr, '#7#heightOfSensorAboveLocalGroundOrDeckOfMarinePlatform', CODES_MISSING_DOUBLE) codes_set(ibufr, 'methodOfPrecipitationMeasurement', CODES_MISSING_LONG) codes_set(ibufr, 'methodOfLiquidContentMeasurementOfPrecipitation', CODES_MISSING_LONG) codes_set(ibufr, '#10#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, 'totalPrecipitationOrTotalWaterEquivalent', CODES_MISSING_DOUBLE) codes_set(ibufr, '#8#heightOfSensorAboveLocalGroundOrDeckOfMarinePlatform', CODES_MISSING_DOUBLE) codes_set(ibufr, 'methodOfEvaporationMeasurement', CODES_MISSING_LONG) codes_set(ibufr, '#11#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, 'evaporation', CODES_MISSING_DOUBLE) codes_set(ibufr, '#12#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, 'totalSunshine', CODES_MISSING_LONG) codes_set(ibufr, '#13#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, 'longWaveRadiationIntegratedOverPeriodSpecified', CODES_MISSING_DOUBLE) codes_set(ibufr, 'shortWaveRadiationIntegratedOverPeriodSpecified', CODES_MISSING_DOUBLE) codes_set(ibufr, 'netRadiationIntegratedOverPeriodSpecified', CODES_MISSING_DOUBLE) codes_set(ibufr, 'globalSolarRadiationIntegratedOverPeriodSpecified', CODES_MISSING_DOUBLE) codes_set(ibufr, 'diffuseSolarRadiationIntegratedOverPeriodSpecified', CODES_MISSING_DOUBLE) codes_set(ibufr, 'directSolarRadiationIntegratedOverPeriodSpecified', CODES_MISSING_DOUBLE) codes_set(ibufr, '#14#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, 'numberOfFlashesThunderstorm', CODES_MISSING_LONG) codes_set(ibufr, '#15#timePeriod', CODES_MISSING_LONG) codes_set(ibufr, '#1#firstOrderStatistics', CODES_MISSING_LONG) codes_set(ibufr, '#2#nonCoordinatePressure', CODES_MISSING_DOUBLE) codes_set(ibufr, '#2#windDirection', CODES_MISSING_LONG) codes_set(ibufr, '#2#windSpeed', CODES_MISSING_DOUBLE) codes_set(ibufr, '#2#airTemperature', CODES_MISSING_DOUBLE) codes_set(ibufr, '#2#relativeHumidity', CODES_MISSING_LONG) codes_set(ibufr, '#2#firstOrderStatistics', CODES_MISSING_LONG) codes_set(ibufr, 'qualityInformationAwsData', CODES_MISSING_LONG) codes_set(ibufr, 'internalMeasurementStatusInformationAws', CODES_MISSING_LONG) # Encode the keys back in the data section codes_set(ibufr, 'pack', 1) def main(): ''' main program reads the command line and encodes the messages into the output filename to run the program program_name.py -a Ascii_input_file -b Bufr_output_file ''' print " codes version {0}".format(codes_get_api_version()) cmdLine=read_cmdline() inputFilename=cmdLine.ascii outFilename=cmdLine.bufr fout=open(outFilename,"w") message_encoding(inputFilename,fout) fout.close() print " output file {0}".format(outFilename) if __name__ == '__main__': main()
The program reads the input csv file into a pandas Dataframe and uses it to encode the BUFR data with the function encode_bufr_new. This function receives a handle to the bufr message and the dataframe . A template of this function can
be obtained by using
bufr_dump -E python synop.bufr > synop.py
The synop.bufr file must contain only one message.
The file synop.py contains all the ecCodes instructions needed to produce the synop.bufr file and can be used as a template to create the bufr_encode_new function from the script. In particular, the 301150 sequence can be added at the
beginning of the unexpandedDescriptors list to include the Wigos information accordingly.
The function message_encoding receives the input Filename, reads the data into the dataframe and loops over each of the records of the dataframe creating individual BUFR mesages that are copied into the file object fout.
This function relies on having the BUFR4_local.tmp file that is part of the ecCodes installation in the samples directory ( usually available by the following command codes_info)
codes_info
ecCodes Version 2.9.0
Default definition files path is used: /usr/local/apps/eccodes/2.9.0/GNU/6.3.0/share/eccodes/definitions
Definition files path can be changed setting ECCODES_DEFINITION_PATH environment variable
Default SAMPLES path is used: /usr/local/apps/eccodes/2.9.0/GNU/6.3.0/share/eccodes/samples
SAMPLES path can be changed setting ECCODES_SAMPLES_PATH environment variable
The BUFR file contains section 2 keys that are used locally at ECMWF.
The keys maching the information from the CSV file were populated. For the repeated keys only the first occurrence was populated. The rest of the keys was filled with missing values.
To run the program
./test_wigos4
.py -a Ascii_input_file -b Bufr_output_file
This produces the output file Bufr_output_file containing the
"key" : "unexpandedDescriptors", "value" : [ 301150, 307091 ] }, [ [ { "key" : "subsetNumber", "value" : 1 }, { "key" : "wigosIdentifierSeries", "value" : 0, "units" : "Numeric" }, [ { "key" : "wigosIssuerOfIdentifier", "value" : 76, "units" : "Numeric"
This process can be adapted for other BUFR data as well. For instance, from Brazil we received two different BUFR files
SYNOP-wsi.bfr
climat-wsi-test.bfr
To find the proper encoding function to replace bufr_encode_new in the script, we can use the ecCodes command line tool bufr_dump
bufr_dump -E python SYNOP-wsi.bfr > SYNOP-wsi.bfr.py
bufr_dump -E python climat-wsi-test.bfr >climat-wsi-test.bfr.py
This command generates a python code that contains the code to update the bufr_encode_new function.
def bufr_encode(): ibufr = codes_bufr_new_from_samples('BUFR4') ivalues = ( 0, 0 ,) codes_set_array(ibufr, 'inputDelayedDescriptorReplicationFactor', ivalues) codes_set(ibufr, 'edition', 4) codes_set(ibufr, 'masterTableNumber', 0) codes_set(ibufr, 'bufrHeaderCentre', 43) codes_set(ibufr, 'bufrHeaderSubCentre', 0) codes_set(ibufr, 'updateSequenceNumber', 0) codes_set(ibufr, 'dataCategory', 0) codes_set(ibufr, 'internationalDataSubCategory', 2) codes_set(ibufr, 'dataSubCategory', 2) codes_set(ibufr, 'masterTablesVersionNumber', 28) codes_set(ibufr, 'localTablesVersionNumber', 0) codes_set(ibufr, 'typicalYear', 2018) codes_set(ibufr, 'typicalMonth', 10) codes_set(ibufr, 'typicalDay', 16) codes_set(ibufr, 'typicalHour', 0) codes_set(ibufr, 'typicalMinute', 0) codes_set(ibufr, 'typicalSecond', 0) codes_set(ibufr, 'numberOfSubsets', 1) codes_set(ibufr, 'observedData', 1) codes_set(ibufr, 'compressedData', 0) ivalues = ( 301150, 307080,) # Create the structure of the data section codes_set_array(ibufr, 'unexpandedDescriptors', ivalues)
As the bufr_encode_new function receives a handle ( ibufr) from the message_encoding function so the first line
ibufr = codes_bufr_new_from_samples('BUFR4')
is not needed
This function message_encoding generates handles to bufr messages using a template BUFR4_local that is part of ecCodes installation ( can be seen by using codes_info)
def message_encoding(FullInputFileName,fout): ''' Message encoding function FullInputFilename : full path of the Ascii file for example /tmp/data/rema_20180918.txt fout : file Object to write the output bufr file( obtained by a call to open ) Requires ecCodes and the BUFR4_local template on ECCODES_PATH/share/eccodes/samples ''' TEMPLATE='BUFR4_local' # reads the Ascii file into a pandas Dataframe dfFull=read_ascii(FullInputFileName) # loops over the rows of the dataFrame dfFull for _,row in dfFull.iterrows(): bid=codes_bufr_new_from_samples(TEMPLATE) try: bufr_encode_new(bid,row) codes_write(bid,fout) except CodesInternalError as ec: print ec codes_release(bid)
The last four lines of SYNOP-wsi.bfr.py are not needed either as they are replaced by the try/except block in the message_encoding function
outfile = open('outfile.bufr', 'w') codes_write(ibufr, outfile) print ("Created output BUFR file 'outfile.bufr'") codes_release(ibufr)
The tool bufr_dump can generate code in Fortran90, Python, C and ecCodes filter language ( that can be executed and tested with bufr_filter command line tool). More information, examples etc available at
DISCLAIMER: This software is intended for testing purposes only. Feedback would be appreciated but technical support can only be given if our workload permits.