Contributors: E. Carboni (UKRI-STFC RAL Space), G. Thomas (UKRI-STFC RAL Space)

History of modifications


Version

Date

Description of modification

Chapters / Sections

V1.0

10/03/2021

Initial (Covers TCDR and additionally ICDR (2017 and 2018))

All






List of datasets covered by this document


Deliverable ID

Product title

Product type (CDR, ICDR)

Version number

Delivery date

D3.3.17-v3.0

ECV Cloud Properties brokered from ESA's Cloud_cci ATSR2-AATSRv3 dataset

CDR

V3.0

30/03/2020

D3.3.18-v3.x

ECV Cloud Properties derived from SLSTR

ICDR

V3.1

30/11/2020 - onward


Related documents


Reference ID

Document

D1Product Validation and Intercomparison Report (PVIR), v6.1. ESA Cloud_cci. http://www.esa-cloud-cci.org/sites/default/files/upload/Cloud_cci_D4.1_PVIR_v6.1.pdf
Last accessed on 25/06/2020

D2

Algorithm Theoretical Basis Document, v.6.2. ESA Cloud_cci.
http://www.esa-cloud-cci.org/sites/default/files/upload/Cloud_cci_D2.1_ATBD_v6.2.pdf
Last accessed on 25/06/2020

D3

Poulsen, C. A., McGarragh, G. R., Thomas, G. E., Stengel, M., Christensen, M. W., Povey, A. C., Proud, S. R., Carboni, E., Hollmann, R., and Grainger, R. G.: Cloud{}{_}cci ATSR-2 and AATSR data set version 3: a 17-year climatology of global cloud and radiation properties, Earth Syst. Sci. Data, 12, 2121–2135, 2020.
https://doi.org/10.5194/essd-12-2121-2020


Acronyms


Acronym

Definition

AATSR

Advanced Along-Track Scanning Radiometer

AMSR-E

Advanced Microwave Scanning Radiometer – EOS

ATBD

Algorithm Theoretical Basis Document

ATSR

Along-Track Scanning Radiometer

bc-RMSE

Bias Corrected Root Mean Squared Error

BRDF

Bidirectional Reflectance Distribution Function

C3S

Copernicus Climate Change Service

CALIOP

Cloud-Aerosol Lidar with Orthogonal Polarization

CCI

Climate Change Initiative

CDR

Climate Data Record

CER

Cloud Effective Radius

CFC

Cloud Fractional Cover

COT

Cloud Optical Thickness

CTH

Cloud Top Height

CTP

Cloud Top Pressure

CTT

Cloud Top Temperature

CWP

Cloud Water Path

DARDAR

raDAR/liDAR

ECV

Essential Climate Variable

ENVISAT

Environmental Satellite

ERS

European Remote Sensing

ESA

European Space Agency

GCOS

Global Climate Observing System

ICDR

Interim CDR

IWP

Ice Water Path

LWP

Liquid Water Path

MODIS

Moderate Resolution Imaging Spectroradiometer

RAL

Rutherford Appleton Laboratory

SLSTR

Sea and Land Surface Temperature Radiometer

STFC

Science and Technology Facilities Council

SYNOP

Surface synoptic observations

TCDR

Thematic Climate Data Record



Scope of the document

This document provides a description of the product validation results for the Essential Climate Variable (ECV) Cloud Properties. These products are brokered to (in case of (A)ATSR) or produced for the Climate Data Store (in the case of SLSTR) by the Copernicus Climate Change Service (C3S).

The TCDR is a brokered version of ESA’s Cloud_cci ATSR2-AATSR version 3.0 (Level-3C) dataset, produced by RAL from the second Along-Track Scanning Radiometer (ATSR-2) on board the second European Remote Sensing Satellite (ERS-2) spanned 1995-2003 and the Advanced ATSR (AATSR) on board ENVISAT spanned 2002-2012. In addition, the Sea and Land Surface Temperature Radiometer (SLSTR) on board of Sentinel-3 spans from 2017 to present and forms the ICDR. The validation for the ICDR is over the period from January 2017 to December 2018. The retrieval algorithm is presented in [D2] and the validation methodology refers to the Cloud_cci Product Validation and Intercomparison Report [D1]. The same methodology is applied to SLSTR dataset.

Poulsen et al. (2019) [D3] is the paper describing the dataset that includes cloud properties as well as Surface Radiation Budget and Earth Radiation Budget products. This document will mainly refer to the Cloud_cci Product Validation and Intercomparison Report [D1].


Executive Summary

The ESA Climate Change Initiative (CCI) Cloud Properties Climate Data Record (CDR) is a brokered product from the ESA Cloud_cci project, while the extension Interim CDR (ICDR) produced from the Sea and Land Surface Temperature Radiometer (SLSTR) is produced specifically for C3S. The product is generated by STFC RAL Space, using the Community Cloud for Climate (CC4CL) processor, based on the Optimal Retrieval of Aerosol and Cloud (ORAC) algorithm.

The Cloud_cci dataset comprises 17 years (1995-2012) of satellite-based measurements derived from the Along Track Scanning Radiometers (ATSR-2 and AATSR) onboard the ESA second European Research Satellite (ERS-2) and ENVISAT. This TCDR is partnered with the ICDR produced from the Sentinel-3A SLSTR, beginning in 2017, and Sentinel-3B SLSTR beginning in October 2018

The TCDR and ICDR provided comprise daily (0.1° x 0.1° resolution), and monthly (0.5° x 0.5° resolution), means of cloud properties on a regular global latitude-longitude grid and includes the following products: Cloud Fractional Cover (CFC), Cloud Optical Thickness (COT), Cloud Effective Radius (CER), Liquid/Ice Water Path (LWP/IWP), and Cloud Top Pressure (CTP), Height (CTH) and Temperature (CTT). Note, that the brokered service within Copernicus provides only a subset of the original CCI cloud properties dataset, thus the mentioned products do not cover the entire range on cloud products contained in the original dataset provided by Cloud_cci.

Table 1: provides a summary of the estimated accuracies of the TCDR together with the GCOS requirements. The validation results are provided in [D1] section 7-2, with a recommendation for use.

Product name


GCOS targets

Cloud CCI dataset

Comments

Cloud Fractional Cover (CFC)

Accuracy

5 %

-5.1 %

Level-2 validation against CALIOP


Stability (per decade)

3 %

-0.52 %

L3C comparisons to MODIS C6.1

Cloud Top Height (CTH)/ Pressure (CTP)

Accuracy (low/mid/high)

0.5/0.7/ 1.6 km

0.12 km (liquid cloud)
-1.76 km (ice cloud)

Level-2 validation against CALIOP


Stability (per decade)

15 hPa

0.45 hPa

L3C comparisons to MODIS C6.1

Cloud Optical Thickness (COT)

Accuracy

10 %

n/v



COT bias:
2.4 (liquid cloud)
0.58 (ice cloud)

No validation possible due to a lack of reliable reference data. Through LWP and IWP validation.
Values here present the global bias in comparison with MODIS Level-3


Stability (per decade)

2 %

-0.03 % (liquid cloud)

L3C comparisons to MODIS C6.1

Liquid Water Path (LWP)

Accuracy

25 %

-2.4%

Level-2 validation against AMSR-E


Stability (per decade)

5 %

-0.06 %1

L3C comparisons to MODIS C6.1

Ice Water Path (IWP)

Accuracy

25 %

-39.9 %

Level-2 validation against DARDAR


Stability (per decade)

5 %

-0.04 %2

L3C comparisons to MODIS C6.1

Cloud Effective Radius (CER)

Accuracy

10 %

n/v



CER bias :
1.8 m (liquid)
12 m (ice)

No validation possible due to a lack of reliable reference data. Variable is based on LWP and IWP.
Values here present the global bias in comparison with MODIS Level-3


Stability (per decade)

1m

-0.96 μm (liquid)
-0.33 μm (ice)

L3C comparisons to MODIS C6.1


1 Value obtained from the difference between CDR LWP trend (0.99g/m2/decade) and MODIS LWP trend (8.06g/m2/decade) divided by mean MODIS C6.1 LWP (123g/m²).

2 Value obtained from the difference between CDR IWP trend (-2.27g/m2/decade) and MODIS IWP trend (7.82g/m2/decade) divided by mean MODIS C6.1 IWP (208g/m²).


1. Product validation methodology

The validation methodology is described in section 2.4 of [D1]. In summary, we use the bias (mean difference) between CDR and reference data as the metric for accuracy. The bias corrected root mean squared error (bc-RMSE) is used to express the precision of CDR compared to a reference data record, which is also known as the standard deviation about the mean. Stability is calculated as the variation of the bias over a multi-annual time period.


2. Validation results

2.1 Validation results for the TCDR

The validation results for TCDR products are provided in [D1], section 3 and 4. The evaluation is divided in validation against high quality and satellite-based reference observations (CALIOP, AMSR-E and DARDAR) and an intercomparison to well-established, satellite-based cloud datasets of similar kind (e.g. MODIS Collection 6.1). Table 1 in the Executive summary provides a summary of the resulting TCDR accuracies.


2.1.1 Cloud Fractional Cover (CFC)

Cloud Fractional Cover (CFC) is validated against CALIOP in [D1], section 3.1.1 and compared with MODIS in [D1], section 4.1.1.

A slight underestimation of cloud occurrences is found in the Cloud_cci data compared to CALIOP, which is primarily due to a lack of sensitivity of passive imager data with respect to optically very thin clouds.

2.1.2 Cloud Top Height (CTH)

Cloud Top Height is validated against CALIOP in [D1] section 3.1.3.

For liquid clouds only very small biases (0.12km) and bc-RMSE (0.97km) are found.

For ice clouds, the strong underestimation of cloud top height is evident and a common feature for all three Cloud_cci datasets, and mainly caused by high-level, optically thin clouds. Biases are around -3.5 km and bc-RMSE around 2.3 km. Removing the optically very thin cloud layers at the top of the CALIOP profiles, improves the agreement between Cloud_cci and CALIOP significantly.

2.1.3 Cloud Top Pressure (CTP), Cloud Optical Thickness (COT) and Cloud Effective Radius (CER)

These parameters are compared against MODIS in the following sections of [D1]: Cloud Top Pressure (CTP) is compared in section 4.1.2. Cloud Effective Radius (CER) is compared in section 4.1.5 and 4.1.6. Cloud Optical Thickness (COT) is compared in section 4.1.3 and 4.1.4 for liquid and ice cloud.

2.1.4 Liquid Water Path (LWP) and Ice Water Path (IWP)

Liquid Water Path (LWP) is validated in [D1] section 3.1.4 against AMSR-E products and compared with MODIS in [D1] section 4.1.7.

Ice Water Path (IWP) is validated against DARDAR IWP product in [D1] section 3.1.5 and compared with MODIS in section 4.1.8.

Validating liquid water path over ocean against AMSR-E gives very convincing results for CDR dataset, with bc-RMSE values of 25 g/m², only small biases (-1.44 g/m²) and high correlations (0.76). Validating ice water path against the combined CALIPSO-CloudSat product DARDAR shows good agreement with correlations of 0.45. There is a general underestimation of IWP by Cloud_cci which in terms of relative bias partly exceeds 50%.


2.2 ICDR comparison with MODIS

The first 24 months of SLSTR products have been compared against MODIS (Collection 6.1 Terra) following the same methodology described in [D1] section 4.1. We estimate the bias, i.e. mean differences, and the monthly mean global average of C3S and the MODIS data. To compute the monthly mean global average of both datasets we considered only the valid data between -60 and +60 latitude.

Table 2 shows the bias results from this comparison for both TCDR data (from D1) and for ICDR.

Of the cloud properties considered only the IWP has higher bias against MODIS for the ICDR.

Figure 1 and 2 show an example of ICDR monthly products for March 2017 and the equivalent monthly product from MODIS.

Table 2: Bias of TCDR and ICDR cloud properties estimate in comparison with MODIS.

Parameters

TCDR (2003-2011) bias

ICDR (2017-2018) bias

CFC

  • 8.1%
  • 5 %

CTP

-25 hPa

-15 hPa

LWP

-17.3 g/m2

-16.0 g/m2

IWP

-28.8 g/m2

-34 g/m2

Figure 1: CFC, CTP, LWP and IWP from SLSTR (ICDR dataset) for March 2017.


Figure 2. CFC, CTP, LWP and IWP from MODIS dataset for March 2017

3. Application(s) specific assessment

N/A

4. Compliance with user requirements

The main validation results are summarized in [D1], Section 7, including a comparison with GCOS requirements in table 7.2. We report here a summary.

Table 1 provides an overview of the GCOS requirements for the Cloud Properties and the values achieved by TCDR. It should be noted that GCOS requirements are targets and are often not attainable using existing or historical observing systems. The Cloud_cci doesn’t meet the frequency requirement (3h) due to the nature of the satellite observations, but exceeds the spatial resolution (50 km GCOS target). ICDR accuracies (estimate with the first 24 months only) are consistent with TCDR accuracies apart from IWP where we find slightly higher bias in comparison with MODIS (section 2.2).

For nearly all validations for which a trusted reference data source is available, the compliance to GCOS requirements could be shown, e.g. cloud fractional cover stability, cloud top height accuracy and stability, liquid water path accuracy and stability and ice water path stability. Cloud fractional cover accuracy is close to the GCOS target requirements. For effective radius and optical thickness no reliable reference data is available for accuracy compliance analysis.

A general problem is the assessment of the stability. Stability assessments are based on comparisons to MODIS, which in turn however, is not an entirely reliable source itself as it is sometimes characterized by significant trends which may or may not be true.

Recommendation on the usage and know limitations (from [D1] table 7.1):

Cloud Fractional Cover (CFC)

Cloud Top Pressure (CTP)

Cloud effective radius (CER)

Liquid water content (LWP)

Ice water content (IWP)

This document has been produced in the context of the Copernicus Climate Change Service (C3S).

The activities leading to these results have been contracted by the European Centre for Medium-Range Weather Forecasts, operator of C3S on behalf of the European Union (Delegation agreement signed on 11/11/2014). All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose.

The users thereof use the information at their sole risk and liability. For the avoidance of all doubt , the European Commission and the European Centre for Medium - Range Weather Forecasts have no liability in respect of this document, which is merely representing the author's view.

Related articles

Related articles appear here based on the labels you select. Click to edit the macro and add or change labels.