page under construction ------------------------------
e.g. Example scripts for EFAS and GloFAS
Retrieve data from CDS API
import cdsapi c = cdsapi.Client() c.retrieve('efas-historical', { "format": "netcdf", "hday": ["15","16","17","18"], "hmonth": "november", "hyear": "2020", "model_levels": "surface_level", "system_version": "version_4_0", "time": ["00:00","06:00","18:00"], "variable": "river_discharge_in_the_last_6_hours" }, 'clim_2020111500.nc') c.retrieve( 'efas-forecast', { 'format': 'netcdf', 'originating_centre': 'ecmwf', 'product_type': 'ensemble_perturbed_forecasts', 'variable': 'river_discharge_in_the_last_6_hours', 'model_levels': 'surface_level', 'year': '2020', 'month': '11', 'day': '15', 'time': '00:00', 'leadtime_hour': [ '6', '12', '18', '24', '30', '36', '42', '48', '54', '60', '66', '72', ], }, 'eue_2020111500.nc') c.retrieve( 'efas-forecast', { 'format': 'netcdf', 'originating_centre': 'ecmwf', 'product_type': 'high_resolution_forecast', 'variable': [ 'soil_depth', 'volumetric_soil_moisture', ], 'model_levels': 'soil_levels', 'year': '2019', 'month': '01', 'day': '30', 'time': '00:00', 'leadtime_hour': [ '6', '12', '18', '24', '30', '36', '42', '48', '54', '60', '66', '72', ], 'soil_level': [ '1', '2', '3', ], }, 'eud_2019013000.nc') |
Retrieve static data
This is available only when marsurl adaptor will be in production. For the moment I am using the datasets from the test stack. |
Plot map discharge
import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cf import numpy as np import pandas as pd import xarray as xr ds = xr.open_dataset('../data/clim_19910300.nc') cmap = plt.cm.get_cmap('jet').copy() cmap.set_under('white') crs = ccrs.LambertAzimuthalEqualArea(central_longitude=10,central_latitude=52,false_easting=4321000,false_northing=3210000) # Plot map discharge > 20 m/s fig, ax = plt.subplots(1,1,subplot_kw={'projection': crs}, figsize=(20,20) ) ax.gridlines(crs=crs, linestyle="-") ax.coastlines() ax.add_feature(cf.BORDERS) sc = ds["dis06"].plot(ax=ax,cmap=cmap,vmin=20,add_colorbar=False) cbar = plt.colorbar(sc, shrink=.5,) cbar.set_label(ds.dis06.GRIB_name) |
Timeseries
import numpy as np import xarray as xr |
Soil moisture
import xarray as xr from matplotlib.pyplot import colorbar import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cf import numpy as np import pandas as pd # helper function def make_cmap(colors, position=None): ''' make_cmap takes a list of tuples which contain RGB values. The RGB values are [0 to 255] make_cmap returns a cmap with equally spaced colors. Arrange your tuples so that the first color is the lowest value for the colorbar and the last is the highest. position contains values from 0 to 1 to dictate the location of each color. ''' import matplotlib as mpl import numpy as np import sys bit_rgb = np.linspace(0,1,256) if position == None: position = np.linspace(0,1,len(colors)) else: if len(position) != len(colors): sys.exit("position length must be the same as colors") elif position[0] != 0 or position[-1] != 1: sys.exit("position must start with 0 and end with 1") for i in range(len(colors)): colors[i] = (bit_rgb[colors[i][0]], bit_rgb[colors[i][1]], bit_rgb[colors[i][2]]) cdict = {'red':[], 'green':[], 'blue':[]} for pos, color in zip(position, colors): cdict['red'].append((pos, color[0], color[0])) cdict['green'].append((pos, color[1], color[1])) cdict['blue'].append((pos, color[2], color[2])) cmap = mpl.colors.LinearSegmentedColormap('my_colormap',cdict,256) return cmap thmin1 = xr.open_dataset('thmin1.nc') thmin2 = xr.open_dataset('thmin2.nc') thmin3 = xr.open_dataset('thmin3.nc') thmax1 = xr.open_dataset('thmax1.nc') thmax2 = xr.open_dataset('thmax2.nc') thmax3 = xr.open_dataset('thmax3.nc') ds = xr.open_dataset('eud_2019013000.nc') mean_vsw = ds.vsw.mean('step') # Mean Volumetric Soil Moisture for all time steps th1 = mean_vsw[0,:,:] # Mean Volumetric Soil Moisture for Layer 1 th2 = mean_vsw[1,:,:] # Mean Volumetric Soil Moisture for Layer 2 sd1 = ds.sod[0,0,:,:].values sd2 = ds.sod[0,1,:,:].values - ds.sod[0,0,:,:].values data=(thmin1.wiltingpoint.values * sd1 + thmin2.wiltingpoint.values * sd2)/(sd1 + sd2) thmin = xr.DataArray(data,dims=(ds.y.name,ds.x.name),name='thmin') ds['thmin'] = thmin data=(thmax2.fieldcapacity.values * sd1 + thmax2.fieldcapacity.values * sd2)/(sd1 + sd2) thmax = xr.DataArray(data,dims=(ds.y.name,ds.x.name),name='thmax') ds['thmax'] = thmax data=((th1 * sd1) + (th2 * sd2))/(sd1 +sd2) smtot = xr.DataArray(data,dims=(ds.y.name,ds.x.name),name='smtot') ds['smtot'] = smtot data=(((smtot - thmin)/(thmax - thmin))) SM = xr.DataArray(data,dims=(ds.y.name,ds.x.name),name='SM') ds['SM'] = SM colors = [(64,0,3), (133,8,3), (249,0,0), (250,106,0), (249,210,0), (189,248,255), (92,138,255), (0,98,255), (0,0,255), (0,0,88)] ### Create an array or list of positions from 0 to 1. position = [0, 0.2, 0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] cmap = make_cmap(colors, position=position) crs = ccrs.LambertAzimuthalEqualArea(central_longitude=10,central_latitude=52,false_easting=4321000,false_northing=3210000) fig, ax = plt.subplots(1,1,subplot_kw={'projection': crs}, figsize=(15,15) ) ax.gridlines(crs=crs, linestyle="-") ax.coastlines() ax.add_feature(cf.BORDERS) sc = ds["SM"].plot(ax=ax,cmap=cmap,add_colorbar=False) cbar = plt.colorbar(sc, shrink=.5,) cbar.set_label("SM") |
Snow depth water equivalent
The script shows how to retrieve the control reforecasts product from year 1999 to 2018, relative to the date 2019-01-03, for two station coordinates, one on the river network of the Thames and the other one on the Po river.
| Plot retrieved data:
|
---|
This script shows how to retrieve a point time series reforecast on the river Thames for a single forecast reference time, specifically the 11th of July 2007.
| In July 2007 a series of flooding events hit the UK, in particular in some areas of the upper Thames catchment up to 120 mm of rain fell between 19th and 20th of July. Plot retrieved data:
|
---|