page under construction ------------------------------
Instructions on the installation and set up of the CDS API can be found here.
## === retrieve EFAS Medium-Range Climatology === import cdsapi if __name__ == '__main__': c = cdsapi.Client() VARIABLES = [ 'river_discharge_in_the_last_6_hours', 'snow_depth_water_equivalent', ] YEARS = ['%02d'%(mn) for mn in range(1991,2022)] MONTHS = ['january', 'february', 'march', 'april', 'may', 'june', 'july', 'august', 'september', 'october', 'november', 'december'] DAYS = ['%02d'%(mn) for mn in range(1,32)] for variable in VARIABLES: for year in YEARS: c.retrieve( 'efas-historical', { 'system_version': 'version_4_0', 'variable': variable, 'model_levels': 'surface_level', 'hyear': '1991', 'hmonth': MONTHS, 'hday': DAYS, 'time': '00:00', 'format': 'grib', }, f'efas_historical_{variable}_{year}.grib') |
## === retrieve EFAS Medium-Range Forecast === import cdsapi import datetime def compute_dates_range(start_date,end_date,loop_days=True): start_date = datetime.date(*[int(x) for x in start_date.split('-')]) end_date = datetime.date(*[int(x) for x in end_date.split('-')]) ndays = (end_date - start_date).days + 1 dates = [] for d in range(ndays): dates.append(start_date + datetime.timedelta(d)) if not loop_days: dates = [i for i in dates if i.day == 1] else: pass return dates if __name__ == '__main__': # start the client c = cdsapi.Client() # user inputs START_DATE = '2020-10-14' # first date with available data END_DATE = '2021-02-28' LEADTIMES = [str(lt) for lt in range(0,372,6)] # loop over dates and save to disk dates = compute_dates_range(START_DATE,END_DATE) for date in dates: year = date.strftime('%Y') month = date.strftime('%m') day = date.strftime('%d') print(f"RETRIEVING: {year}-{month}-{day}") c.retrieve('efas-forecast', { 'format': 'grib', 'originating_centre':'ecmwf', 'product_type':'ensemble_perturbed_forecasts', 'variable': 'river_discharge_in_the_last_6_hours', 'model_levels': 'surface_level', 'year': year, 'month': month, 'day': day, 'leadtime_hour':LEADTIMES, 'time': '12:00', }, f'efas_forecast_{year}_{month}_{day}.grib') |
## === retrieve GloFAS Medium-Range Climatology === import cdsapi if __name__ == '__main__': c = cdsapi.Client() YEARS = ['%02d'%(mn) for mn in range(1979,2021)] MONTHS = ['january', 'february', 'march', 'april', 'may', 'june', 'july', 'august', 'september', 'october', 'november', 'december'] DAYS = ['%02d'%(mn) for mn in range(1,32)] for year in YEARS: c.retrieve( 'cems-glofas-historical', { 'system_version':'version_2_1', 'product_type': 'consolidated', 'hydrological_model': 'htessel_lisflood', 'variable': 'river_discharge_in_the_last_24_hours', 'hyear': year,, 'hmonth': MONTHS, 'hday': DAYS,, 'format': 'grib', }, f'glofas_historical_{year}.grib') |
## === retrieve GloFAS Medium-Range Forecast === import cdsapi import datetime import warnings def compute_dates_range(start_date,end_date,loop_days=True): start_date = datetime.date(*[int(x) for x in start_date.split('-')]) end_date = datetime.date(*[int(x) for x in end_date.split('-')]) ndays = (end_date - start_date).days + 1 dates = [] for d in range(ndays): dates.append(start_date + datetime.timedelta(d)) if not loop_days: dates = [i for i in dates if i.day == 1] else: pass return dates if __name__ == '__main__': # start the client c = cdsapi.Client() # user inputs START_DATE = '2019-11-05' # first date with available data END_DATE = '2021-03-15' LEADTIMES = [str(lt) for lt in range(24,744,24)] # loop over dates and save to disk dates = compute_dates_range(START_DATE,END_DATE) for date in dates: year = date.strftime('%Y') month = date.strftime('%m') day = date.strftime('%d') print(f"RETRIEVING: {year}-{month}-{day}") c.retrieve( 'cems-glofas-forecast', { 'format': 'grib', 'system_version':'operational', 'hydrological_model': 'htessel_lisflood', 'product_type':'ensemble_perturbed_forecasts', 'variable': 'river_discharge_in_the_last_24_hours', 'year': year, 'month': month, 'day': day, 'leadtime_hour':LEADTIMES }, f'glofas_forecast_{year}_{month}_{day}.grib') |
## === retrieve GloFAS Medium-Range Reforecast === ## === subset India, Pakistan, Nepal and Bangladesh region === import cdsapi from datetime import datetime, timedelta def get_monthsdays(): start, end = datetime(2019, 1, 1), datetime(2019, 12, 31) days = [start + timedelta(days=i) for i in range((end - start).days + 1)] monthday = [d.strftime("%B-%d").split("-") for d in days if d.weekday() in [0,3] ] return monthday MONTHSDAYS = get_monthsdays() if __name__ == '__main__': c = cdsapi.Client() # user inputs BBOX = [40.05 ,59.95, 4.95, 95.05] # North West South East YEARS = ['%d'%(y) for y in range(1999,2019)] LEADTIMES = ['%d'%(l) for l in range(24,1128,24)] # submit request for md in MONTHSDAYS: month = md[0].lower() day = md[1] c.retrieve( 'cems-glofas-reforecast', { 'system_version': 'version_2_2', 'variable': 'river_discharge_in_the_last_24_hours', 'format': 'grib', 'hydrological_model': 'htessel_lisflood', 'product_type': 'control_reforecast', 'area': BBOX,# < - subset 'hyear': YEARS, 'hmonth': month , 'hday': day , 'leadtime_hour': LEADTIMES, }, f'glofas_reforecast_{month}_{day}.grib') |
The script shows how to retrieve the control reforecasts product from year 1999 to 2018, relative to the date 2019-01-03, for two station coordinates, one on the river network of the Thames and the other one on the Po river.
| Plot retrieved data:
|
---|
This script shows how to retrieve a point time series reforecast on the river Thames for a single forecast reference time, specifically the 11th of July 2007.
| In July 2007 a series of flooding events hit the UK, in particular in some areas of the upper Thames catchment up to 120 mm of rain fell between 19th and 20th of July. Plot retrieved data:
|
---|
## === retrieve GloFAS Seasonal Forecast === ## === subset South America/Amazon region === import cdsapi if __name__ == '__main__': c = cdsapi.Client() YEARS = ['%d'%(y) for y in range(2020,2022)] MONTHS = ['%02d'%(m) for m in range(1,13)] LEADTIMES = ['%d'%(l) for l in range(24,2976,24)] for year in YEARS: for month in MONTHS: c.retrieve( 'cems-glofas-seasonal', { 'variable': 'river_discharge_in_the_last_24_hours', 'format': 'grib', 'year': year, 'month': '12' if year == '2020' else month, 'leadtime_hour': LEADTIMES, 'area': [ 10.95, -90.95, -30.95, -29.95 ] }, f'glofas_seasonal_{year}_{month}.grib') |
## === retrieve GloFAS Seasonal Reforecast === ## === subset South America/Amazon region === import cdsapi if __name__ == '__main__': c = cdsapi.Client() YEARS = ['%d'%(y) for y in range(1981,2021)] MONTHS = ['january', 'february', 'march', 'april', 'may', 'june', 'july', 'august', 'september', 'october', 'november', 'december'] LEADTIMES = ['%d'%(l) for l in range(24,2976,24)] for year in YEARS: for month in MONTHS: c.retrieve( 'cems-glofas-seasonal-reforecast', { 'system_version': 'version_2_2', 'variable':'river_discharge_in_the_last_24_hours', 'format':'grib', 'hydrological_model':'htessel_lisflood', 'hyear': year, 'hmonth': month, 'leadtime_hour': LEADTIMES, 'area': [ 10.95, -90.95, -30.95, -29.95 ] }, f'glofas_seasonal_reforecast_{year}_{month}.grib') |