You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 11 Next »

EUMETSAT infrastructure contains RX A6000 NVIDIA GPU cards. To employ the GPU, one need to provision one of the following flavors:

Flavor namevCPURAMvGPU TypevGPU RAMSSD storage (GB)
vm.a6000.1214 GBRTXA6000-6C6 GB40
vm.a6000.2428 GBRTXA6000-12C12 GB80
vm.a6000.4856 GBRTXA6000-24C24 GB160
vm.a6000.816112 GBRTXA6000-48C48 GB320

To use the GPUs:

  1. Provision new Centos or Ubuntu instance.
  2. Select layout ending with eumetsat-gpu and one of the plans listed above. Beside that, configure your instance as preferred and continue deployment process.
  3. Once VM is deployed, you can verify GPUs for example using nvidia-smi program from command line (see below for confirming library installations and drivers).

Usage

Useful commands

You can see GPU information using nvidia-smi 

$ nvidia-smi
Mon Jan  8 10:24:59 2024
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.161.03   Driver Version: 470.161.03   CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA RTXA6000...  On   | 00000000:00:05.0 Off |                    0 |
| N/A   N/A    P8    N/A /  N/A |   3712MiB / 48895MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

NVIDIA tools are available in /usr/local/cuda-11.4/bin/. You can add them to PATH following:

$ export PATH=$PATH:/usr/local/cuda-11.4/bin/

Libraries

CUDA version is currently 11.4 which need to be the same with drivers and thus can't be changed.  Tensorflow library compatibility is available at: https://www.tensorflow.org/install/source#gpu. We have tested that TensorFlow > 2.6.1 work.

Using Conda

Update and conda installation

# change shell to bash for installations
$ bash

# update default packages
$ sudo apt-get update
$ sudo apt-get update

# it's possible to get some update key and dirmngr errors while updating, below commands supply a workaround. After running the workaround, run update & upgrade again.
$ sudo apt install dirmngr
$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys <YOUR-KEY-LIKE-AA16FCBCA621E701>

# install miniforge (or any anaconda manager)
$ wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh
$ chmod +x Miniforge3-Linux-x86_64.sh
$ ./Miniforge3-Linux-x86_64.sh

#When it asks, conda init? answer yes
#Do you wish the installer to initialize Miniforge3
#by running conda init? [yes|no]
#[no] >>> 
$ yes

$ exit
$ bash

Library installations

# create conda environment
$ conda create -n ML python=3.8

# activate the environment
$ conda activate ML

# install packages, note that installing tensorflow-gpu and keras also installs: CUDA toolkit, cuDNN (CUDA Deep Neural Network library), Numpy, Scipy, Pillow
$ conda install tensorflow-gpu keras

# (OPTIONAL) cudatoolkit is installed automatically while installing keras and tensorflow-gpu, but if you need a specific (or latest) version run below command.
$ conda install -c anaconda cudatoolkit

# (OPTIONAL) Installing pytorch GPU, pytorch might need cuda 11.8
$ conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

Confirmation of installations

$ nvidia-smi
Mon Jan  8 10:24:59 2024
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.161.03   Driver Version: 470.161.03   CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA RTXA6000...  On   | 00000000:00:05.0 Off |                    0 |
| N/A   N/A    P8    N/A /  N/A |   3712MiB / 48895MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

$ python3 --version
Python 3.8.18

$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Mon_Oct_11_21:27:02_PDT_2021
Cuda compilation tools, release 11.4, V11.4.152
Build cuda_11.4.r11.4/compiler.30521435_0

$ whereis cuda
cuda: /usr/local/cuda

$ cat /home/<USERNAME>/miniforge3/envs/myenv/include/cudnn.h
.
.
.
/*   cudnn : Neural Networks Library

*/

#if !defined(CUDNN_H_)
#define CUDNN_H_

#include <cuda_runtime.h>
#include <stdint.h>

#include "cudnn_version.h"
#include "cudnn_ops_infer.h"
#include "cudnn_ops_train.h"
#include "cudnn_adv_infer.h"
#include "cudnn_adv_train.h"
#include "cudnn_cnn_infer.h"
#include "cudnn_cnn_train.h"

#include "cudnn_backend.h"

#if defined(__cplusplus)
extern "C" {
#endif

#if defined(__cplusplus)
}
#endif

#endif /* CUDNN_H_ */

$ conda list | grep tensorflow
tensorflow                2.13.1          cuda118py38h409af0c_1    conda-forge
tensorflow-base           2.13.1          cuda118py38h52ca5c6_1    conda-forge
tensorflow-estimator      2.13.1          cuda118py38ha2f8a09_1    conda-forge
tensorflow-gpu            2.13.1          cuda118py38h0240f8b_1    conda-forge

$ conda list | grep keras
keras                     2.13.1             pyhd8ed1ab_0    conda-forge

$ python
import tensorflow as tf
tf.test.is_built_with_cuda()
True
tf.config.list_physical_devices('GPU')
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
print(tf.__version__)
2.13.1


#Using Docker

If you want to use GPUs in docker, you need to take few extra steps after creating the VM.

  1. Install Docker 
    In ubuntu:

    sudo apt install -y docker.io
    sudo usermod -aG docker $USER

    In Centos:

    sudo yum-config-manager \
        --add-repo \
        https://download.docker.com/linux/centos/docker-ce.repo
    sudo yum install docker-ce docker-ce-cli containerd.io
    sudo systemctl --now enable docker
    sudo usermod -aG docker $USER
  2. Logout and login again
  3. Install nvidia-container toolkit
    Ubuntu:

    distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
    curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
    curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
    sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
    sudo systemctl restart docker

    Centos:

    	distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
       && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
    sudo yum clean expire-cache && sudo yum install -y nvidia-docker2
    sudo systemctl restart docker
  4. Run GPU-compatible notebook. For example:

    # might need sudo
    docker run --gpus all --env NVIDIA_DISABLE_REQUIRE=1 -it --rm -v $(realpath ~/notebooks):/tf/notebooks -p 8888:8888 tensorflow/tensorflow:latest-gpu-jupyter
  • No labels