...
- Provision new Centos or Ubuntu instance.
- Select layouyt layout ending with
eumetsat
-gpu and one of the plans listed above. Beside that, configure your instance as preferred and continue deployment process. - Once VM is deployed, you can verify GPUs for example using
nvidia-smi
program from command line (see below for confirming library installations and drivers).
Usage
Useful commands
You can see GPU information using nvidia-smi
Code Block |
---|
$ nvidia-smi Mon JanFeb 85 1013:2401:5943 2024 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 470.161223.0302 Driver Version: 470.161223.0302 CUDA Version: 11.4 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA RTXA6000...-6C On | 00000000:00:05.0 Off | 0 | | N/A N/A P8 N/A / N/A | 3712MiB 512MiB / 48895MiB5976MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+ |
NVIDIA tools are available in /usr/local/cuda-11.48/bin/. You can add them to PATH following:
Code Block |
---|
$ export PATH=$PATH:/usr/local/cuda-11.48/bin/ |
Libraries
CUDA version is currently 11.4 which need to be the same with drivers and thus can't be changed. Tensorflow library compatibility is available at: https://www.tensorflow.org/install/source#gpu. We have tested that TensorFlow > 2.6.1 work.
Using Conda
Update and conda installation
Code Block |
---|
# change shell to bash for installations $ bash # updateinstall default packages $ sudo apt-get updateminiforge (or any anaconda manager) $ sudo apt-get update # it's possible to get some update key and dirmngr errors while updating, below commands supply a workaround. After running the workaround, run update & upgrade again. $ sudo apt install dirmngr $ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys <YOUR-KEY-LIKE-AA16FCBCA621E701> # install miniforge (or any anaconda manager) $ wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh $ chmod +x Miniforge3-Linux-x86_64.sh $ ./Miniforge3-Linux-x86_64.sh #When it asks, conda init? answer yes #Do you wish the installer to initialize Miniforge3 #by running conda init? [yes|no] #[no] >>> $ yes $ exit $ bash |
Library installations
wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh
$ chmod +x Miniforge3-Linux-x86_64.sh
$ ./Miniforge3-Linux-x86_64.sh
#When it asks, conda init? answer yes
#Do you wish the installer to initialize Miniforge3
#by running conda init? [yes|no]
#[no] >>>
$ yes
$ exit
$ bash |
Library installations
Code Block |
---|
# create conda environment
$ conda create -n ML python=3.8
# activate the environment
$ conda activate ML
# install packages, note that installing tensorflow-gpu and keras also installs: CUDA toolkit, cuDNN (CUDA Deep Neural Network library), Numpy, Scipy, Pillow
$ conda install tensorflow-gpu keras
# (OPTIONAL) cudatoolkit is installed automatically while installing keras and tensorflow-gpu, but if you need a specific (or latest) version run below command.
$ conda install -c anaconda cudatoolkit
# (OPTIONAL) Installing pytorch GPU, pytorch might need cuda 11.8
$ conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia |
Code Block |
# create conda environment
$ conda create -n ML python=3.8
# activate the environment
$ conda activate ML
# install packages, note that installing tensorflow-gpu and keras also installs: CUDA toolkit, cuDNN (CUDA Deep Neural Network library), Numpy, Scipy, Pillow
$ conda install tensorflow-gpu keras
# (OPTIONAL) cudatoolkit is installed automatically while installing keras and tensorflow-gpu, but if you need a specific (or latest) version run below command.
$ conda install -c anaconda cudatoolkit |
Confirmation of installations
Code Block |
---|
$ nvidia-smi Mon JanFeb 85 1013:2414:5945 2024 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 470.161223.0302 Driver Version: 470.161223.0302 CUDA Version: 11.4 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA RTXA6000...-6C On | 00000000:00:05.0 Off | 0 | | N/A N/A P8 N/A / N/A | 3712MiB 512MiB / 48895MiB5976MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+ $ python3 --version Python 3.8.18 $ nvcc --version nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-20212022 NVIDIA Corporation Built on MonWed_OctSep_1121_2110:2733:0258_PDT_20212022 Cuda compilation tools, release 11.48, V11.48.15289 Build cuda_11.48.r11.48/compiler.3052143531833905_0 $ whereis cuda cuda: /usr/local/cuda $ cat /home/yigit<USERNAME>/miniforge3/envs/myenvML/include/cudnn.h . . . /* cudnn : Neural Networks Library */ #if !defined(CUDNN_H_) #define CUDNN_H_ #include <cuda_runtime.h> #include <stdint.h> #include "cudnn_version.h" #include "cudnn_ops_infer.h" #include "cudnn_ops_train.h" #include "cudnn_adv_infer.h" #include "cudnn_adv_train.h" #include "cudnn_cnn_infer.h" #include "cudnn_cnn_train.h" #include "cudnn_backend.h" #if defined(__cplusplus) extern "C" { #endif #if defined(__cplusplus) } #endif #endif /* CUDNN_H_ */ $ conda list | grep tensorflow tensorflow 2.13.1 cuda118py38h409af0c_1 conda-forge tensorflow-base 2.13.1 cuda118py38h52ca5c6_1 conda-forge tensorflow-estimator 2.13.1 cuda118py38ha2f8a09_1 conda-forge tensorflow-gpu 2.13.1 cuda118py38h0240f8b_1 conda-forge $ conda list | grep keras keras 2.13.1 pyhd8ed1ab_0 conda-forge $ python import tensorflow as tf tf.test.is_built_with_cuda() True tf.config.list_physical_devices('GPU') [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')] print(tf.__version__) 2.13.1cuda118py38h52ca5c6_1 conda-forge tensorflow-estimator 2.13.1 cuda118py38ha2f8a09_1 conda-forge tensorflow-gpu 2.13.1 cuda118py38h0240f8b_1 conda-forge $ conda list | grep keras keras 2.13.1 pyhd8ed1ab_0 conda-forge $ python import tensorflow as tf tf.test.is_built_with_cuda() True tf.config.list_physical_devices('GPU') [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')] print(tf.__version__) 2.13.1 # (OPTIONAL) Check pytorch $ python import torch $ python print(torch.__version__) # Print PyTorch version 2.2.0 $ python print(torch.cuda.is_available()) # Check if CUDA is available True $ python print(torch.version.cuda) # Print the CUDA version PyTorch is using 11.8 $ python if torch.cuda.is_available(): # Create a tensor and move it to GPU x = torch.tensor([1.0, 2.0]).cuda() print(x) # Print the tensor to verify it's on the GPU else: print("CUDA is not available. Check your PyTorch installation.") tensor([1., 2.], device='cuda:0') |
#Using Docker
If you want to use GPUs in docker, you need to take few extra steps after creating the VM.
Install Docker
In ubuntu:Code Block sudo apt install -y docker.io sudo usermod -aG docker $USER
In Centos:
Code Block sudo yum-config-manager \ --add-repo \ https://download.docker.com/linux/centos/docker-ce.repo sudo yum install docker-ce docker-ce-cli containerd.io sudo systemctl --now enable docker sudo usermod -aG docker $USER
- Logout and login again
Install nvidia-container toolkit
Ubuntu:Code Block distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit sudo systemctl restart docker
Centos:
Code Block distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \ && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo sudo yum clean expire-cache && sudo yum install -y nvidia-docker2 sudo systemctl restart docker
Run GPU-compatible notebook. For example:
Code Block sudo docker run --gpus all --env NVIDIA_DISABLE_REQUIRE=1 -it --rm -v $(realpath ~/notebooks):/tf/notebooks -p 8888:8888 tensorflow/tensorflow:latest-gpu-jupyter