The following scores are to be calculated for all parameters against both analysis (except mean sea-level pressure) and observation:
Wind
Mandatory:
- rms vector wind error
- mean error of wind speed
Other parameters
Mandatory
- Mean error
- Root mean square (rms) error
- Correlation coefficient between forecast and analysis anomalies (not required for obs)
- S1 score (only for MSLP and only against analysis)
Additional recommended
- mean absolute error
- rms forecast and analysis anomalies (not required for observations)
- standard deviation of forecast and analysis fields (not required for observations)
Definition
...
The following definitions should be used
Mean error error
Mathdisplay |
---|
M = \frac{1}{S_w} \sum_{i=1}^n w_i (x_f - x_v)_i |
where the sum of the weights
Mathdisplay |
---|
S_w = \sum_{i=1}^n w_i |
Root mean square (rms) error
Mathdisplay |
---|
rmse = \sqrt {\frac{1}{S_w} \sum_{i=1}^n w_i (x_f - x_v)_i^2 } |
Correlation coefficient between forecast and analysis anomalies
rms vector wind error
Mean absolute error
rms anomaly
standard deviation of field where
S1 score
Where:
Mathdisplay |
---|
r = \frac{\sum_{i=1}^n w_i (x_f-x_c-M_{f,c})_i (x_v-x_c-M_{v,c})_i}{\sqrt{\left(\sum_{i=1}^n w_i (x_f-x_c-M_{f,c})_i^2 \right) \left(\sum_{i=1}^n w_i (x_v-x_c-M_{v,c})_i^2 \right) }} |
rms vector wind error
Mathdisplay |
---|
rmse = \sqrt {\frac{1}{S_w} \sum_{i=1}^n w_i (\vec{V}_f - \vec{V}_v)_i^2 } |
Mean absolute error
Mathdisplay |
---|
MAE = \frac{1}{S_w} \sum_{i=1}^n w_i | x_f - x_v |_i |
rms anomaly
Mathdisplay |
---|
rmsa = \sqrt {\frac{1}{S_w} \sum_{i=1}^n w_i (x - x_c)_i^2 } |
standard deviation of field
Mathdisplay |
---|
sd = \sqrt {\frac{1}{S_w} \sum_{i=1}^n w_i (x - M_x)_i^2 } |
where
Mathdisplay |
---|
M_x = \frac{1}{S_w} \sum_{i=1}^n w_i x_i |
S1 score
Mathdisplay |
---|
S1 = 100 \frac{\sum_{i=1}^n w_i (e_g)_i}{\sum_{i=1}^n w_i (G_L)_i} |
Where:
Mathinline |
---|
x_f |
= the forecast value of the parameter in question;
Mathinline |
---|
x_v |
= the corresponding verifying value;
Mathinline |
---|
x_c |
= the climatological value of the parameter
; n = the number of grid points or observations in the verification area;
Mathinline |
---|
M_{f,c} |
= the mean value over the verification area of the forecast
anomalies from climate
;
Mathinline |
---|
M_{v,c} |
= the mean value over the verification area of the analysed
anomalies from climate
;
Mathinline |
---|
\vec{V}_f |
= the forecast wind vector;
Mathinline |
---|
\vec{V}_v |
= the corresponding verifying value;
The
=
=
where the differentiation is approximated by differences computed on the verification grid.
The weights :
Mathdisplay |
---|
e_g = \left ( \left | \frac{\partial}{\partial x}(x_f-x_v)\right | + \left | \frac{\partial}{\partial y}(x_f-x_v)\right | \right ) |
Mathdisplay |
---|
G_L = \max \left ( \left | \frac{\partial x_f}{\partial x}\right | , \left | \frac{\partial x_v}{\partial x}\right | \right) + \max \left ( \left | \frac{\partial x_f}{\partial y}\right | , \left | \frac{\partial x_v}{\partial y}\right | \right) |
The weights w i applied at each grid point or observation location are defined as
Verification against analyses:
...
Mathinline w_i = \cos \theta_i
, cosine of latitude at the the grid point i
Verification against observations:
...
Mathinline w_i = 1/n
, all observations have equal weight