Tabs Page |
---|
|
Code Block |
---|
language | py |
---|
title | Storm trackTrack_TEST |
---|
|
#Metview# Metview MacroExample
# **************************** LICENSE START ***********************************
#
# Copyright 2019 ECMWF. This software is distributed under the terms
# of the Apache License version 2.0. In applying this license, ECMWF does not
# waive the privileges and immunities granted to it by virtue of its status as
# an Intergovernmental Organization or submit itself to any jurisdiction.
#
# ***************************** LICENSE END ************************************
#
import metview as mv
# read CSV file with the track positions and dates
tblfilename = read_table(
table_delimiter : " ",
table_combine_delimiters : "sandy_track.txt"
if not mv.exist(filename):
mv.gallery.load_dataset(filename)
tbl = mv.read_table(
table_delimiter=" ",
table_combine_delimiters="on",
table_header_row : =0,
table table_filename : ="sandy_track.txt",
)
# read track details into a set of vectors
val_date = mv.values(tbl,1 0)
val_time = mv.values(tbl,2 1)
val_lon = mv.values(tbl,3 2)
val_lat = mv.values(tbl,4 3)
# defineto dateplot andtext time labels forat track points
val_label=nil
for i=1 to count(val_date) do
val_label = val_label & [" " & substring(string(val_date[i]),7,8) & "/" & val_time[i] ]
end for
# define line and symbol properties
track_graph = mgraph(
graph_line_colour : "red",
graph_line_thickness : 4,
graph_symbol : "on",
graph_symbol_colour : "white",
graph_symbol_height : 0.5,
graph_symbol_marker_index : 15,
graph_symbol_outline : "on",
graph_symbol_outline_colour : "red"
)
# define label properties
track_text = msymb(
symbol_type : "text",
symbol_text_font_colour : "black",
symbol_text_font_size: "0.3",
symbol_text_font_style: "bold",
symbol_text_list : val_label
)
# create a visualiser for the track
track_vis = input_visualiser(
input_plot_type : "geo_points",
input_longitude_values : tolist(val_lon),
input_latitude_values : tolist(val_lat)
)
# read mslp forecast from grib file
g_mslp=read(source: "sandy_mslp.grib")
# define mslp contouring
cont_mslp = mcont(
contour_line_thickness : 2,
contour_line_colour : "black",
contour_highlight : "off",
contour_level_selection_type : "interval",
contour_interval : 5,
grib_scaling_of_derived_fields : "on"
)
# define coastline
coast = mcoast(
map_coastline_colour : "RGB(0.4449,0.4414,0.4414)",
map_coastline_resolution : "low",
map_coastline_land_shade : "on",
map_coastline_land_shade_colour : "RGB(0.5333,0.5333,0.5333)",
map_coastline_sea_shade : "on",
map_coastline_sea_shade_colour : "RGB(0.7765,0.8177,0.8941)",
map_boundaries : "on",
map_boundaries_colour : "mustard",
map_boundaries_thickness : 2,
map_grid_colour : "RGB(0.2627,0.2627,0.2627)"
)
# define geographical view
view = geoview(
map_projection : "polar_stereographiceach point, we will need to use the 'text' mode
# of msymb(). This requires associating each point with its text label, so we will
# generate values of 0,1,2,3,...,N-1 for the points and create an msymb() that
# maps each value to a generated date/time label.
val_idx = list(range(len(val_lat)+1)) # indexes: 0->N
# define date and time labels for track points
val_label = []
for i in range(len(val_date)):
val_label.append(
" " + str(val_date[i])[6:8] + "/" + "{:02d}".format(int(val_time[i]))
)
# define line and symbol properties
track_graph = mv.mgraph(
graph_line_colour="red",
graph_line_thickness=4,
graph_symbol="on",
graph_symbol_colour="white",
graph_symbol_height=0.5,
graph_symbol_marker_index=15,
graph_symbol_outline="on",
graph_symbol_outline_colour="red",
)
# define label properties
track_text = mv.msymb(
legend="off",
symbol_type="text",
symbol_table_mode="advanced",
symbol_advanced_table_selection_type="list",
symbol_advanced_table_level_list=val_idx,
symbol_advanced_table_text_list=val_label,
symbol_advanced_table_text_font_size=0.5,
symbol_advanced_table_text_font_style="bold",
symbol_advanced_table_text_font_colour="black",
symbol_advanced_table_text_display_type="right",
)
# create a visualiser for the track
track_vis = mv.input_visualiser(
input_plot_type="geo_points",
input_longitude_values=val_lon,
input_latitude_values=val_lat,
input_values=val_idx
)
# read mslp forecast from grib file
filename = "sandy_mslp.grib"
if mv.exist(filename):
g_mslp = mv.read(filename)
else:
g_mslp = mv.gallery.load_dataset(filename)
# define mslp contouring
cont_mslp = mv.mcont(
contour_line_thickness=2,
contour_line_colour="black",
contour_highlight="off",
contour_level_selection_type="interval",
contour_interval=5,
grib_scaling_of_derived_fields="on",
)
# define coastline
coast = mv.mcoast(
map_coastline_colour="RGB(0.4449,0.4414,0.4414)",
map_coastline_resolution="low",
map_coastline_land_shade="on",
map_coastline_land_shade_colour="RGB(0.5333,0.5333,0.5333)",
map_coastline_sea_shade="on",
map_coastline_sea_shade_colour="RGB(0.7765,0.8177,0.8941)",
map_boundaries="on",
map_area_definition : "cornersboundaries_colour="mustard",
areamap_boundaries_thickness=2,
map_grid_colour="RGB(0.2627,0.2627,0.2627)",
)
# define geographical view
view = mv.geoview(
map_projection="polar_stereographic",
: map_area_definition="corners",
area=[19.72, -98.59, 42.61, -47.28],
map_vertical_longitude : =-85,
coastlines : =coast,
)
# define the output plot file
mv.setoutput(mv.pdf_output(output_name : '="storm_track'"))
#Plot# Plot the track and the mslp
mv.plot(view, g_mslp, trackcont_vismslp, track_graphvis, track_text, g_mslp, cont_mslp)
track_graph)
|
|
Tabs Page |
---|
|
Code Block |
---|
language | py |
---|
title | Storm trackTrack_TEST |
---|
|
#Metview Macro
# **************************** LICENSE START ***********************************
#
# Copyright 2019 ECMWF. This software is distributed under the terms
# of the Apache License version 2.0. In applying this license, ECMWF does not
# waive the privileges and immunities granted to it by virtue of its status as
# an Intergovernmental Organization or submit itself to any jurisdiction.
#
# ***************************** LICENSE END *************************************
#
import metview as mv
# read CSV file with the track positions and dates
tbl = mv.read_table(
table_delimiter = " ",
table_combine_delimiters = "on",
table_header_row = 0,
table_filename = "sandy_track.txt"
)
# read track details into a set of vectors
val_date = mv.values(tbl, 0)
val_time = mv.values(tbl, 1)
val_lon = mv.values(tbl, 2)
val_lat = mv.values(tbl, 3)
# define date and time labels for track points
val_label = []
for i in range(len(val_date)):
val_label.append(" " + str(val_date[i])[6:8] + "/" + "{:02d}".format(int(val_time[i])))
# define line and symbol properties
track_graph = mv.mgraph(
graph_line_colour = "red",
graph_line_thickness = 4,
graph_symbol = "on",
graph_symbol_colour = "white",
graph_symbol_height = 0.5,
graph_symbol_marker_index = 15,
graph_symbol_outline = "on",
graph_symbol_outline_colour = "red"
)
# define label properties
track_text = mv.msymb(
symbol_type = "text",
symbol_text_font_colour = "black",
symbol_text_font_size = "0.3",
symbol_text_font_style = "bold",
symbol_text_list = val_label
)
#
# read CSV file with the track positions and dates
tbl = read_table(
table_delimiter : " ",
table_combine_delimiters : "on",
table_header_row : 0,
table_filename : "sandy_track.txt"
)
# read track details into a set of vectors
val_date = values(tbl,1)
val_time = values(tbl,2)
val_lon = values(tbl,3)
val_lat = values(tbl,4)
# define date and time labels for track points
val_label=nil
for i=1 to count(val_date) do
val_label = val_label & [" " & substring(string(val_date[i]),7,8) & "/" & val_time[i] ]
end for
# to plot text labels at each point, we will need to use the 'text' mode
# of msymb(). This requires associating each point with its text label, so we will
# generate values of 0,1,2,3,...,N-1 for the points and create an msymb() that
# maps each value to a generated date/time label.
val_idx = []
num_vals = count(val_lat)
for i = 0 to num_vals do
val_idx = val_idx & [i]
end for
# define line and symbol properties
track_graph = mgraph(
graph_line_colour : "red",
graph_line_thickness : 4,
graph_symbol : "on",
graph_symbol_colour : "white",
graph_symbol_height : 0.5,
graph_symbol_marker_index : 15,
graph_symbol_outline : "on",
graph_symbol_outline_colour : "red"
)
# define label properties
track_text = msymb(
legend : "off",
symbol_type : "text",
symbol_table_mode : "advanced",
symbol_advanced_table_selection_type : "list",
symbol_advanced_table_level_list : val_idx,
symbol_advanced_table_text_list : val_label,
symbol_advanced_table_text_font_size : 0.5,
symbol_advanced_table_text_font_style : "bold",
symbol_advanced_table_text_font_colour : "black",
symbol_advanced_table_text_display_type : "right",
)
# create a visualiser for the track
track_vis = mv.input_visualiser(
input_plot_type = : "geo_points",
input_longitude_values = list : tolist(val_lon),
input_latitude_values = list : tolist(val_lat)
)
# read mslp forecast from grib file
g_mslp = mv.read(source: "sandy_mslp.grib")
# define mslp contouring
cont_mslp = mv.mcont(
contour_line_thickness = 2,
contour_line_colour thickness : 2,
contour_line_colour : = "black",
contour_highlight contour_highlight : = "off",
contour_level_selection_type : = "interval",
contour_interval : 5,
= 5,
grib_scaling_of_derived_fields = : "on"
)
# define coastline
coast = mv.mcoast(
map_coastline_colour =: "RGB(0.4449,0.4414,0.4414)",
map_coastline_resolution =: "low",
map_coastline_land_shade =: "on",
map_coastline_land_shade_colour =: "RGB(0.5333,0.5333,0.5333)",
map_coastline_sea_shade =: "on",
map_coastline_sea_shade_colour =: "RGB(0.7765,0.8177,0.8941)",
map_boundaries =: "on",
map_boundaries_colour =: "mustard",
map_boundaries_thickness =: 2,
map_grid_colour =: "RGB(0.2627,0.2627,0.2627)"
)
# define geographical view
view = mv.geoview(
map_projection =: "polar_stereographic",
map_area_definition =: "corners",
area =: [19.72,-98.59,42.61,-47.28],
map_vertical_longitude =: -85,
coastlines = : coast
)
# define the output plot file
mv.setoutput(mv.pdf_output(output_name =: 'storm_track'))
#Plot the track and the mslp
mv.plot(view, track_vis, track_graph, track_text, g_mslp, cont_mslp)
|
|
|