The following scores are to be calculated for all parameters against both analysis (except mean sea-level pressure) and observation:
Wind
Mandatory:
- rms vector wind error
- mean error of wind speed
Other parameters
Mandatory
- Mean error
- Root mean square (rms) error
- Correlation coefficient between forecast and analysis anomalies (not required for obs)
- S1 score (only for MSLP and only against analysis)
Additional recommended
- mean absolute error
- rms forecast and analysis anomalies (not required for observations)
- standard deviation of forecast and analysis fields (not required for observations)
Definition
The following definitions should be used
Mean errorÂ
...
Root mean square (rms) error
Mathdisplay |
---|
rmsrmse = \sqrt {\frac{1}{S_w} \sum_{i=1}^n w_i (x_f - x_v)_i^2 } |
...
rms vector wind error
Mathdisplay |
---|
rmsrmse = \sqrt {\frac{1}{S_w} \sum_{i=1}^n w_i (\vec{V}_f - \vec{V}_v)_i^2 } |
...
= the forecast value of the parameter in question;
Mathinline |
---|
x_v |
= the corresponding verifying value;
Mathinline |
---|
x_c |
= the climatological value of the parameter; n = the number of grid points or observations in the verification area;
Mathinline |
---|
M_{f,c} |
= the mean value over the verification area of the forecast anomalies from climate;
Mathinline |
---|
M_{v,c} |
= the mean value over the verification area of the analysed anomalies from climate;
Mathinline |
---|
\vec{V}_f |
= the forecast wind vector;
Mathinline |
---|
\vec{V}_v |
= the corresponding verifying value;
The differentiation is approximated by differences computed on the verification grid:
...
Verification against analyses:
Mathinline w_i = \cos \theta_i
, cosine of laltitude athe latitude at the the grid point i
Verification against observations:
Mathinline w_i = 1/n
, all observations have equal weight