Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Expand
titleParametrization of sub-grid scale processes

Multiexcerpt
MultiExcerptNamePAtime
TimeMondayTuesdayWednesdayThursdayFriday
9.15

Introduction to the course

Erland Källén / Students

 


 

Expand
titleClouds (2)

This session describes the representation of subgrid-scale variability of humidity, cloud and precipitation and how this can be parametrized in atmospheric models.

By the end of the session you should be able to:

•    recognise the reasons for representing the subgrid variability of humidity and cloud in an atmospheric model

•    explain how the key quantity of cloud fraction is related to subgrid heterogeneity assumptions

•     describe the different types of subgrid cloud parametrization schemes.

Richard Forbes

 

Expand
titleLand Surface (2):

This session will have two main components:

  • An overview of the role of snow in the climate system from observations, models and forecasts
.Description
  • ; with a description of the current representation of snow in the ECMWF model.
  • An overview of the role of vegetation in NWP with a description of the evolution of vegetation representation in the ECMWF model, supported by some evaluation examples
and ongoing developments
  • .

By the end of the session, the students should be able:

  • Identify the main processes associated with snow and vegetation in the climate systemNWP
  • Describe the main components of the related to snow and vegetation scheme in the ECMWF land surface model

Souhail Boussetta

 

Expand
titleLand Surface (3): Surface Energy, Water Cycle

 By the end of the session, the students should be able:

  • relate flux and storage
  • recognise land surface predictors and land diagnostic quantities

Gianpaolo Balsamo

 

Expand
titleParametrization and Data Assimilation

This three-hour lecture will start by explaining the role and main ingredients of data assimilation in general. The widely used framework of variational data assimilation will then be gradually introduced. The challenges associated with the necessary inclusion of physical parametrizations in the data assimilation process will be highlighted. The concept of adjoint model as well as the techniques to derive it will be introduced. The importance of the linearity constraint in 4D-Var and the methods to address it will be detailed. The set of linearized physical parametrizations used at ECMWF will then be briefly presented. Finally, various examples of the use of physical parametrizations in variational data assimilation and its impact on weather forecast quality will be given.

By the end of the session, the students should be able:

•    to name the main ingredients of a data assimilation system.

•    to tell why physical parametrizations are needed in data assimilation.

•    to identify the role of the adjoint code in 4D-Var.

•    to recognize the importance of the regularization of the linearized code.

Philippe Lopez

 


10.45
Expand
titleRadiation (1)

This module aims to introduce the fundamentals of radiative transfer theory and its role within the global atmospheric circulation. The lectures will also cover the techniques of numerical modelling of the radiative transfer equations in global-circulation models with a particular focus on the code in use in the ECMWF Integrated Forecasting System.

By the end of the session students should be able to:

•    Identify the key processes controlling the atmospheric radiative balance

•    Recognize the role of the radiative transfer in the Earth energy balance

•    Estimate the impact of changes in the radiative parameterizations on climate

Additional outcomes:

•    Develop skills in data analysis and numerical modelling

 

Robin Hogan

 

Expand
titleConvection (1)

Convection affects all atmospheric scales. Therefore, the convection session aims to provide a deeper understanding of the atmospheric general circulation and its interaction with convective heating and vertical transports. The notions and techniques acquired during the course should be useful for developers of convective parametrizations, forecasters and for analysing ouput from high-resolution convection resolving models.

By the end of the session you should become familiarised with

•    the interaction between the large-scale circulation and the convection including  radiative-convective equilibrium and convectively-coupled large-scale waves

•    the notion of convective adjustment and the mass flux concept in particular

•    the basic concepts behind the ECMWF convection parametrization and some useful numerical tricks

•    forecasting convection including convective systems and the diurnal cycle

•    diagnose forecast errors related to convection.

Peter Bechtold


Expand
titleRadiation (3)

This module aims to introduce the fundamentals of radiative transfer theory and its role within the global atmospheric circulation. The lectures will also cover the techniques of numerical modelling of the radiative transfer equations in global-circulation models with a particular focus on the code in use in the ECMWF Integrated Forecasting System.

By the end of the session students should be able to:

•    Identify the key processes controlling the atmospheric radiative balance

•    Recognize the role of the radiative transfer in the Earth energy balance

•    Estimate the impact of changes in the radiative parameterizations on climate

Additional outcomes:

•    Develop skills in data analysis and numerical modelling

Robin Hogan

 

Expand
titleConvection (3)

Convection affects all atmospheric scales. Therefore, the convection session aims to provide a deeper understanding of the atmospheric general circulation and its interaction with convective heating and vertical transports. The notions and techniques acquired during the course should be useful for developers of convective parametrizations, forecasters and for analysing ouput from high-resolution convection resolving models.

By the end of the session you should become familiarised with

•    the interaction between the large-scale circulation and the convection including  radiative-convective equilibrium and convectively-coupled large-scale waves

•    the notion of convective adjustment and the mass flux concept in particular

•    the basic concepts behind the ECMWF convection parametrization and some useful numerical tricks

•    forecasting convection including convective systems and the diurnal cycle

•    diagnose forecast errors related to convection.

Peter Bechtold


Expand
titleNumerics of Parameterization

This short lecture is an introduction to the questions of time splitting and process splitting in a numerical weather prediction model and to the problems resulting from the interaction of different numerical solvers inside the same model.

After this introduction, you should

•    be fully aware that each parametrisation is only a small part of a much larger system, usually one term in the full system of equations which needs to be solved by the forecast model,

•    remember, when working on your own parametrisation(s), that parametrisations are also subject to the constraints imposed by numerical analysis and algorithmic, as is the solver in the dynamical core.

Sylvie Malardel

 

11.55
Expand
titleBoundary Layer (1)

This session gives a theoretical introduction of the planetary boundary layer, including its definition, classification, notions about turbulence within the boundary layer, differences between clear and cloudy boundary layers, and equations used to describe the mean state in a numerical model.

Expected outcomes:

•    understand what is the boundary layer, its characteristics and why it is important to study it and represent it correctly in numerical models

•    understand the difference between the various boundary layer types

Irina Sandu

Expand
titleRadiation (2)

This module aims to introduce the fundamentals of radiative transfer theory and its role within the global atmospheric circulation. The lectures will also cover the techniques of numerical modelling of the radiative transfer equations in global-circulation models with a particular focus on the code in use in the ECMWF Integrated Forecasting System.

By the end of the session students should be able to:

•    Identify the key processes controlling the atmospheric radiative balance

•    Recognize the role of the radiative transfer in the Earth energy balance

•    Estimate the impact of changes in the radiative parameterizations on climate

Additional outcomes:

•    Develop skills in data analysis and numerical modelling

Alessio Bozzo


Expand
titleConvection (2)

Convection affects all atmospheric scales. Therefore, the convection session aims to provide a deeper understanding of the atmospheric general circulation and its interaction with convective heating and vertical transports. The notions and techniques acquired during the course should be useful for developers of convective parametrizations, forecasters and for analysing ouput from high-resolution convection resolving models.

By the end of the session you should become familiarised with

•    the interaction between the large-scale circulation and the convection including  radiative-convective equilibrium and convectively-coupled large-scale waves

•    the notion of convective adjustment and the mass flux concept in particular

•    the basic concepts behind the ECMWF convection parametrization and some useful numerical tricks

•    forecasting convection including convective systems and the diurnal cycle

•    diagnose forecast errors related to convection.

Peter Bechtold


Expand
titleClouds (3)

Building on the previous two Cloud sessions, the practical implementation of a cloud parametrization is described, using the ECMWF global model as an example appropriate for global weather forecasting.

By the end of the session you should be able to:

•    explain the key sources and sinks of cloud and precipitation required in a parametrization

•    describe the main components of the ECMWF stratiform cloud parametrization

•    recognise the limitations of approximating complex processes.

Richard Forbes


Expand
titleModel Evaluation: Clouds and Boundary Layer

This session will give an overview of techniques and data sources used for the verification of the boundary layer scheme. We will use examples from the IFS to explore how verification methods can help to identify systematic errors in the model's boundary layer parameterization, and guide future model development.

By the end of this session you should be able to:

•    Identify data sources and products suitable for BL verification

•    Recognize the strengths and limitations of the verification strategies discussed

•    Choose a suitable verification method to investigate model errors in boundary layer height, transport and cloudiness.

Maike Ahlgrimm


14.00
Expand
titleClouds (1)

This session gives a brief overview of cloud parametrization issues and an understanding of the basic microphysics of liquid, ice and mixed phase cloud and precipitation processes.

By the end of the session you should be able to:

•    recall the basic concepts for the design of a cloud parametrization

•    describe the key microphysical processes in the atmosphere

•    recognize the important microphysical processes that need to be parametrized in a global NWP model.

Richard Forbes

 

Expand
titleBoundary Layer (2)

This session focuses on representation of the surface layer, i.e. the layer between the surface and the first model level. More particularly, it explains how the surface fluxes are parametrized, and it gives insights on the representation of the surfaces roughness lengths which are one of the crucial aspects of the formulation of the surface fluxes.

Expected outcomes:

•    be aware of the difficulties related to the representation of the surface layer in a numerical model

•    understand how the surface fluxes are parametrized

Irina Sandu

 

Expand
titleBoundary Layer (3)

This session explains the different approaches used in numerical models to parametrize the turbulent mixing taking place at the subgrid scale, above the surface layer. Various turbulence closures are presented before describing closure currently used in the ECMWF model.

Expected outcomes:

•    understand what a turbulence closure is and what are the types of closures encountered in numerical models

•    have an overview of the parameterization of turbulent mixing in the ECMWF model

Irina Sandu

 


Expand
titleParametrization and Data Assimilation

This three-hour lecture will start by explaining the role and main ingredients of data assimilation in general. The widely used framework of variational data assimilation will then be gradually introduced. The challenges associated with the necessary inclusion of physical parametrizations in the data assimilation process will be highlighted. The concept of adjoint model as well as the techniques to derive it will be introduced. The importance of the linearity constraint in 4D-Var and the methods to address it will be detailed. The set of linearized physical parametrizations used at ECMWF will then be briefly presented. Finally, various examples of the use of physical parametrizations in variational data assimilation and its impact on weather forecast quality will be given.

By the end of the session, the students should be able:

•    to name the main ingredients of a data assimilation system.

•    to tell why physical parametrizations are needed in data assimilation.

•    to identify the role of the adjoint code in 4D-Var.

•    to recognize the importance of the regularization of the linearized code.

Philippe Lopez




Expand
titleParameterization of Sub-grid Orography

On the basis of simple gravity wave theory, the concepts of sub-grib turbulent form drag, flow blocking, and gravity wave excitation will be introduced. The ECMWF formulations will be described, and the impact will be discussed.

By the end of the session students should be able to:

•    Describe the relevant physical mechanisms related to sub-grid orography that have impact on flow in the atmosphere.

•    Describe the impact of sub-grid orography.  

 

Anton Beljaars


15.30
Expand
titleLand Surface (1): Introduction

By the end of the session students should be able to:

  • recognise land elements relevant to weather,
  • review land modelling strategies to heterogeneity

Gianpaolo Balsamo

 

Introduction to the Single Column Model

Filip Vana


Radiation exercises

Alessio Bozzo and Robin Hogan

 

 

Land Surface exercises

Gianpaolo Balsamo and Souhail Boussetta

Boundary Layer & Cloud exercises

Irina Sandu, Maike Ahlgrimm and Richard Forbes

 

 

 

Moist Processes Exercises

Richard Forbes and Peter Bechtold


16.40

Moist Processes Games

Richard Forbes and Peter Bechtold

Radiation exercises

Alessio Bozzo and Robin Hogan

Land Surface exercises

Gianpaolo Balsamo and Souhail Boussetta

Boundary Layer & Cloud exercises

Irina Sandu, Maike Ahlgrimm and Richard Forbes

Course wrap up and certificates

...

Expand
titlePredictability and ocean-atmosphere ensembles

Multiexcerpt
MultiExcerptNamePRtime

Time:

MondayTuesdayWednesdayThursdayFriday
9.15-10.15

Introduction to the course

with Computer Hall tour

Expand
titleEnsemble data assimilation

The aim of this session is to introduce the ECMWF ensemble of data assimilation (EDA). The rationale and methodology of the EDA will be illustrated, and its use in to simulate initial uncertainties in the ECMWF ensemble prediction system (ENS) will be presented.

By the end of the session you should be able to:

  • know what is the ECMWF EDA

  • illustrate how the EDA is used to simulate initial uncertainty in ensemble prediction

  • understand the main differences between singular vectors and EDA-based perturbations

 


Expand
titleEnsemble verification (2)

Abstract: The lectures introduce methods of ensemble verification. They cover the verification of discrete forecasts (e.g. dry/wet) and continuous scalar forecasts (e.g. temperature). Various scores such as the Brier score and the continuous ranked probability score are introduced.

After the lectures you should be able to

  • explain what a reliable probabilistic forecast is and how to measure reliability

  • understand why resolution and sharpness of a probabilistic forecast matter

  • compute several of the standard verification metrics used for ensemble forecasts

Martin Leutbecher

 

 

 

Expand
titleCoupled ocean-atmosphere variability
This lecture provides a broad overview of the role of the ocean on the predictability and prediction of weather and climate. It introduces some basic phenomena needed to to understand the time scales and nature of the ocean-atmosphere coupling.

 

Magdalena Balmaseda

 

Expand
titleInitializaton techniques in seasonal forecasting

 

 

Magdalena Balmaseda



10.45
Expand
titleIntroduction to Chaos

 The aim of this session is to introduce the idea of chaos.  We will discuss the implications this has for numerical weather prediction.

By the end of the session you should be able to:

  • describe what limits the predictability of the atmosphere
  • understand the need for probabilistic forecasting

Sarah Keeley

Expand
titleApproaches to ensemble prediction/TIGGE

The aim of this session is to illustrate the key characteristic of the nine operational global, medium-range ensemble systems. These are the ensembles available also within the TIGGE (Thorpex Interactive Grand Global Ensemble) project data-base. Similarity and differences in the approaches followed to simulate the sources of forecast uncertainties will be discussed, and their relevance for forecast performance will be illustrated.

By the end of the session you should be able to:

  • illustrate the main similarities and differences of the 9 TIGGE global ensembles

  • link the performance differences of TIGGE ensemble to their design

  • describe the main differences between singular vectors and EDA-based perturbations

 

Roberto Buizza


Expand
titleWeather regimes

 

Franco Molteni

 

Expand
titleCoupled ocean-atmosphere variability - MJO


Frederic Vitart

 

 
Expand
titleThe monthly forecast system at ECMWF
The aim of this session is to provide a general overview of monthly forecasting at ECMWF. We will review the main sources of predictability for the sub-seasonal time scale, including the Madden Julian Oscillation, sudden stratospheric warmings (SSWs), land initial conditions and  their simulation by the coupled IFS-NEMO system. The skill of the ECMWF operational monthly forecasts
will also be discussed.

By the end of the session you should be able to: 
  •   List the different sources of predictability for extended-range forecasts 
  •   Describe the operational system used to produce the ECMWF monthly forecasts 
  •   Assess the skill of the monthly forecasting system

Frederic Vitart

 

11.55
Expand
titleSources of uncertainty
 

The aim of this session is to introduce the main sources of uncertainty that lead to forecast errors. The weather prediction problem will be discussed, and stated it in terms of an appropriate probability density function (PDF). The concept of ensemble prediction based on a finite number of integration will be introduced, and the reason why it is to be the only feasible method to predict the PDF beyond the range of linear growth will be illustrated.

By the end of the session you should be able to:

  • explain which are the main sources of forecast error

  • illustrate why numerical prediction should be stated in probabilistic terms

  • describe the rationale behind ensemble prediction

Roberto Buizza


Expand
titleEnsemble verification (1)

Abstract: The lectures introduce methods of ensemble verification. They cover the verification of discrete forecasts (e.g. dry/wet) and continuous scalar forecasts (e.g. temperature). Various scores such as the Brier score and the continuous ranked probability score are introduced.

After the lectures you should be able to

  • explain what a reliable probabilistic forecast is and how to measure reliability

  • understand why resolution and sharpness of a probabilistic forecast matter

  • compute several of the standard verification metrics used for ensemble forecasts

Martin Leutbecher

 

 


Expand
titleClustering techniques and their applications

The aim of this session is to understand the ECMWF clustering products.

By the end of the session you should be able to:

  • explain how the cluster analysis works
  • use the ECMWF clustering products

 

Laura Ferranti

 

Expand
titleDiagnostics (2)
Increasing observation volumes and model complexity, decreasing errors, and a growing desire for
uncertainty information, all necessitate developments in our diagnostic tools. The aim of these
lectures is to discuss some of these tools, the dynamical insight behind them, and the residual
deficiencies that they are highlighting.

By the end of the lectures you should be aware of:
  •   Some of the key weakness of the ECMWF forecast system 
  •   Some of the diagnostic tools used to identify and understand these weaknesses

 

Mark Rodwell


Expand
titleThe seasonal forecast system at ECMWF

This lecture covers the essentials of building a numerical seasonal forecast system, as exemplified by the present prediction system at ECMWF.

 

  By the end of this lecture, you should be able to:

  • explain the scientific basis of seasonal forecast systems
  • describe in outline ECMWF System 4 and its forecast performance
  • discuss the critical factors in further improving forecast systems

Tim Stockdale

 


 

2.00
Expand
titleSources of predictability beyond the deterministic limit

The aim of this session is to understand how we are able to provide forecasts at long time horizons given the chaotic nature of the atmosphere.

After this session you should be able to:

  • describe the Lorenz idea of Predictability of the first and second kind
  • list examples of the elements of the Earth system that provide predictability on longer timescales
  • understand the type of forecast that we are able to provide beyond the deterministic limit

Sarah Keeley



 

Expand
titleUsing stochastic physics to represent model error
  • explain the physical and practical motivations for using stochastic physics in an ensemble forecast;

  • describe the two stochastic parameterization schemes used in the IFS ensemble, and their respective purposes;

  • be able to identify the improvement in forecasting skill from the inclusion of stochastic physics.

Sarah-Jane Lock


 

Expand
titleDiagnostics (1)
Increasing observation volumes and model complexity, decreasing errors, and a growing desire for
uncertainty information, all necessitate developments in our diagnostic tools. The aim of these
lectures is to discuss some of these tools, the dynamical insight behind them, and the residual
deficiencies that they are highlighting.

By the end of the lectures you should be aware of:
  •   Some of the key weakness of the ECMWF forecast system 
  •   Some of the diagnostic tools used to identify and understand these weaknesses

Mark Rodwell


Expand
titlePost-processing of ensemble forecasts

This lecture gives an overview of ensemble and post-processing and calibration techniques. The presentation is made from the medium-range forecast perspective. The (relative) benefits of calibration and multi-model combination for medium-range forecasting are also discussed.

 

  By the end of this lecture, you should be able to:

  • describe a wide range of possible calibration methods for ensemble systems
  • explain which methods are suitable in which circumstances
  • discuss the merits of calibration and multi-model combination

 

Tim Stockdale
 

 

2.45pm Discussion Session in the Weather Room

Expand
titleLatest forecasts

The latest medium, monthly and seasonal forecasts will be discussed in terms of out look and performance.

This is a combined event with the weekly weather discussion that ECMWF staff attend.

3.30


Expand
titleInitial uncertainties in the medium-range ENS (2)

In this session the generation of the perturbed initial condition of the ECMWF ensemble will be presented. We will discuss the ratio behind using singular vectors in the ensemble and how they are calculated. Then it will be explained how the singular vectors are combined with perturbations from the ensemble of data assimilations to construct the perturbations for the ensemble.

By the end of the session you should be able to:

  • explain the idea behind using singular vectors in the ensemble

  • describe how singular vectors are calculated

  • describe the construction of the ensemble perturbations


Expand
titleStratospheric impacts

 

Andrew Charlton-Perez


 

 


Practice Session:

 

Expand
titleLorenz '95 model

You get the opportunity to experiment yourself with an ensemble prediction system for a chaotic low-dimensional dynamical system introduced by Edward Lorenz in 1995. Experiments permit to study the role of the initial condition perturbations and the representation of model uncertainties. Various metrics introduced in the ensemble verification lectures will be applied in this session.

 

After the practice session, you will be able to use the toy model as an educational tool.

 

Martin Leutbecher

 

Practice Session:

Ensemble Verification

Linus Magnusson/Sarah Keeley



 


4.30-5.15

Understanding Ensembles Practical

 

 

 

5.15 ice breaker

Lecture and Practice Session:

Expand
titleApplication of ENS: Flood

Abstract: The lecture is a short introduction to operational hydrological ensemble prediction systems, with focus on flooding. The European Flood Awareness System (EFAS) is described. The lecture also contains a short interactive exercise in decision making under uncertainty using prbabilistic forecasts as an example.

By the end of the session you should be able to:

  • Describe the components in hydrological ensemble prediction systems (HEPS).

  • Describe the major sources of uncertainty in HEPS and how they can be reduced.

  • Explain the difficulties in using probabilistic flood forecasts in decision making.

Fredrik Wetterhall


Practical extensionPractical extension 

 

This session will have two main components:

     An overview of the role of snow in the climate system from
observations, models and forecasts; with a description of the current
representation of snow in the ECMWF model.
   An overview of the role of vegetation in NWP with a description of
the evolution of vegetation representation in the ECMWF model, supported
by some evaluation examples.

By the end of the session, the students should be able:

     Identify the main processes associated with snow and vegetation in NWP
     Describe the main components related to snow and vegetation scheme
in the ECMWF land surface model