#newfcsystem
Description of upgrade
IFS Cycle 43r1 is an upgrade with many scientific contributions, including changes in data assimilation (both in the EDA and the 4DVAR); in the use of observations; and in modelling. Moreover, ENS hourly fields will be available up to T+90 for the Boundary Conditions optional program. See 'Impact on Users' below for further information. Please note that hourly ENS fields will not be added to the Real Time Catalogue.
With this cycle upgrade, the medium-range ensemble and its monthly extension see a major upgrade in the dynamical ocean model (NEMO): the resolution is increased from 1 degree and 42 layers to 0.25 degrees and 75 layers (ORCA025Z75). Furthermore, NEMO model version v3.4.1 with the interactive sea-ice model (LIM2) is implemented. The ocean and sea-ice components of the ENS initial conditions are provided by the new ocean analysis and reanalysis suite ORAS5, which uses the new ocean model and revised ensemble perturbation method.
...
The page will be updated as required. It was last changed on 1821.10.2016. Latest change: Meteorological impact of the new cycle and update to New model output parametersrelease candidate test data in dissemination, in MARS and in ecCharts available on 25 October 2016.
The next expected update to this page is expected to will be on 2415.1011.2016.
For a record of changes made to this page please refer to Document versions .
Further information and advice regarding the upgrade can be obtained from User Support.
...
Table of Contents | ||||
---|---|---|---|---|
|
...
Timetable for implementation
The planned timetable for the implementation of IFS cycle 43r1 is as follows:
Date | Event |
---|---|
22 Sep 2016 | Initial announcement via e-mail to Member States contact points |
Week beginning 24 Oct 2016 |
Start of release candidate test phase: data available in dissemination |
, MARS and ecCharts | |
22 Nov 2016 | Expected date of implementation |
The timetable represents current expectations and may change in light of actual progress made.
...
The horizontal and vertical resolutions of the ocean model (NEMO v3.4.1) used by ENS is increased from 1 degree and 42 layers to 0.25 degree and 75 layers (ORCA025Z75). An interactive sea-ice model (the Louvain-la-Neuve Sea Ice Model - LIM2) is introduced so that sea-ice cover evolves dynamically. Previously it was persisted for 15 days; over the next 30 days of the forecast, it was relaxed towards the climatology of the previous 5 years.
Ocean initial conditions are taken from ORAS5 instead of ORAS4.
A global fix for tendency perturbations in the stochastic model error scheme SPPT to improve global momentum, energy and moisture conservation properties.
Technical changes
...
- HRES, HRES-WAM and HRES-SAW: analysis and forecast - hourly up to T+90, 3-hourly from T+0 93 to T+144 and 6 hourly from T+150 to T+240.
- ENS and ENS-WAM: hourly up to T+90, 3-hourly from T+0 93 to T+144 and 6 hourly from T+150 to T+360.
- ENS-extended and ENS-WAM-extended: 6 hourly from T+366 to T+1104.
Further technical information is provided in the table.
paramId | shortName | name | description | units | GRIB edition | Component | Test data available | Dissemination | ecCharts | Proposed for Catalogue |
---|---|---|---|---|---|---|---|---|---|---|
260109 | ceil | Ceiling | Cloud-base height relative to the ground |
(at least 50% cloud in one layer) | m | 2 | HRES / ENS |
TBC | TBC | |||||
228046 | hcct | Height of convective cloud top | m | 1 | HRES / ENS |
TBC | TBC | |||||
228047 | hwbt0 | Height of zero-degree wet-bulb temperature | See 43r1 new parameters: Height of zero-degree (and one-degree) wet-bulb temperature | m | 1 | HRES / ENS |
TBC | TBC | |||||
228048 | hwbt1 | Height of one-degree wet-bulb temperature | See 43r1 new parameters: Height of zero-degree (and one-degree) wet-bulb temperature | m | 1 | HRES / ENS |
TBC | TBC | |||||
47 | dsrp | Direct solar radiation | Incident on a plane perpendicular to the sun's direction. This is an accumulated field. | J/m2 | 1 | HRES |
/ ENS |
NB: only forecast | TBC | TBC | ||||
140112 | wefxm | Integral over all frequencies and directions of the product of the group speed and the two-dimensional energy wave spectrum. | W/m | 1 | HRES-WAM / ENS-WAM / |
HRES-SAW | TBC | TBC | ||||
140113 | wefxd | Wave energy flux mean direction | Spectral mean direction over all frequencies and direction of the product of the group velocity vector and the two-dimensional energy wave spectrum. | Degree true | 1 | HRES-WAM / ENS-WAM / |
HRES-SAW | TBC | TBC | ||||
140114 | h1012 | Significant wave height of all waves with periods within the inclusive range from 10 to 12 seconds | Significant wave height of all waves with periods within the inclusive range from 10 to 12 seconds, where the significant wave height is defined as 4 times the square root of the integral over all directions and all frequencies between 1/12 and 1/10 Hz of the two-dimension wave spectrum | m | 1 | HRES |
-WAM / ENS-WAM |
/ HRES-SAW | TBC | TBC | ||||
140115 | h1214 | Significant wave height of all waves with periods within the inclusive range from12 to 14 seconds | Significant wave height of all waves with periods within the inclusive range from 12 to 14 seconds, where the significant wave height is defined as 4 times the square root of the integral over all directions and all frequencies between 1/14 and 1/12 Hz of the two-dimension wave spectrum | m | 1 | HRES-WAM / ENS-WAM / |
HRES-SAW | TBC | TBC | ||||
140116 | h1417 | Significant wave height of all waves with periods within the inclusive range from 14 to 17 seconds | Significant wave height of all waves with periods within the inclusive range from 14 to 17 seconds, where the significant wave height is defined as 4 times the square root of the integral over all directions and all frequencies between 1/17 and 1/14 Hz of the two-dimension wave spectrum | m | 1 | HRES-WAM / ENS-WAM / |
HRES-SAW | TBC | TBC | ||||
140117 | h1721 | Significant wave height of all waves with periods within the inclusive range from 17 to 21 seconds | Significant wave height of all waves with periods within the inclusive range from 17 to 21 seconds, where the significant wave height is defined as 4 times the square root of the integral over all directions and all frequencies between 1/21 and 1/17 Hz of the two-dimension wave spectrum | m | 1 | HRES |
-WAM / ENS-WAM |
/ HRES-SAW | TBC | TBC | ||||
140118 | h2125 | Significant wave height of all waves with periods within the inclusive range from 21 to 25 seconds | Significant wave height of all waves with periods within the inclusive range from 21 to 25 seconds, where the significant wave height is defined as 4 times the square root of the integral over all directions and all frequencies between 1/25 and 1/21 Hz of the two-dimension wave spectrum | m | 1 | HRES-WAM / ENS-WAM / |
HRES-SAW | TBC | TBC | ||||
140119 | h2530 | Significant wave height of all waves with periods within the inclusive range from 25 to 30 seconds | Significant wave height of all waves with periods within the inclusive range from 25 to 30 seconds, where the significant wave height is defined as 4 times the square root of the integral over all directions and all frequencies between 1/30 and 1/25 Hz of the two-dimension wave spectrum | m | 1 | HRES-WAM / ENS-WAM / |
HRES-SAW | TBC | TBC |
The following new variable resolution parameter is also provided in the ensemble forecast variable resolution overlap stream (STREAM=EFOV) at T+360 (STEP=360) from the Monday and Thursday runs of the ensemble forecast monthly extension.
paramId | shortName | name | description | units | GRIB edition | Component | Test data available | Dissemination | ecCharts | Proposed for Catalogue |
---|---|---|---|---|---|---|---|---|---|---|
230047 | dsrpvar | Direct solar radiation (variable resolution) | Variable resolution companion to dsrp. | J/m2 | 1 | ENS |
(STREAM=EFOV) | TBC | TBC |
Meteorological impact of the new cycle
...
The medium-range ensemble and its monthly extension see a major upgrade in the dynamical ocean model. The main changes are summarised in the table.
Old | New | |
---|---|---|
Ocean model version | NEMO v3.4.1 | NEMO v3.4.1 |
Configuration | ORCA1Z42 | ORCA025Z75 |
Horizontal resolution | 1.0° | 0.25° |
Vertical layers | 42 | 75 |
Time step | 3600s | 1200s |
Initial conditions | OCEAN4 using NEMO v3.0 | OCEAN5 using NEMO v3.4.1 |
Sea-ice coupling | None | LIM2 |
ORAS5 complements the current ocean reanalysis system (ORAS4) until there is no longer need for the ORAS4 output.
...
The GRIB model identifiers (generating process identification number) for the new cycle will be changed as follows:
GRIB 1 Section 1 Octets | GRIB 2 Section 4 Octets | grib_api key | Component | Model ID | |
---|---|---|---|---|---|
Old | New | ||||
6 | 14 | generatingProcessIdentifier | Atmospheric model | 146 | 147 |
Ocean wave model | 111 | 112 | |||
HRES stand-alone ocean wave model | 211 | 212 |
Software
EMOSLIB
EMOSLIB 443 is needed to interpolate successfully the wave energy flux mean direction (wefxd) parameter introduced at IFS Cycle 43r1.
GRIB API
GRIB API version 1.17.0 provides full support for the new model output parameters introduced in IFS Cycle 43r1.
Older versions of GRIB API can decode the IFS Cycle 43r1 products successfully but users are advised to use at least GRIB API version 1.14.5, which provides full support for the octahedral reduced Gaussian grid.
ecCodes
ecCodes version 2.0.0 provides full support for the new model output parameters introduced in IFS Cycle 43r1.
Availability of test data from the IFS Cycle 43r1 test suites
Test data in MARS
Test data from the IFS Cycle 43r1 test suites are available in MARS. The data are available with experiment version 0070 (MARS keyword EXPVER=0070) starting from 06 UTC on 10 August 2016. Currently these data are from the beta testing stage.
The data can be accessed in MARS from:
- HRES (class=od, stream=oper, expver=70)
- Wave HRES (class=od, stream=wave, expver=70)
- ENS (class=od, stream=enfo, expver=70)
- 00 UTC cycle only
- ENS Wave (class=od, stream=waef, expver=70)
- 00 UTC cycle only
Only registered users of ECMWF computing systems will be able to access the test data sets in MARS.
The data are intended for testing technical aspects only and should not be used for operational forecasting. Please report any problems you find with this data to User Support.
Test data in dissemination
Availability of test data from the release candidate testing stage in dissemination is expected to be announced during the week beginning 24 October 2016.
Document versions
Anchor | ||||
---|---|---|---|---|
|
Hourly ENS data
This cycle sees the introduction of hourly fields up to T+90 for the ENS for the Boundary Conditions optional program. These fields will not be available on the Real Time Catalogue.
With the introduction of hourly post-processing for the first 90 hours of the ENS, the five accumulated surface variables (10m wind gusts, maximum and minimum 2m temperature, maximum and minimum total precipitation rate since the previous post-processing) will change to represent hourly accumulations instead of the currently operational 3-hourly accumulations. For the rest of the forecast range, these products will remain unchanged providing three-hourly data to T+144, and six-hourly data to T+360.
Impacted model fields | Short name | ID |
---|---|---|
Maximum temperature at 2 m since previous post-processing | MX2T | 201 |
Minimum temperature at 2 m since previous post-processing | MN2T | 202 |
10 m wind gust since previous post-processing | 10FG | 49 |
Maximum total precipitation rate since previous post-processing | MXTPR | 228226 |
Minimum total precipitation rate since previous post-processing | MNTPR | 228227 |
Warning |
---|
Users wishing to continue using three-hourly accumulations can contact Dragan Jokic to change their dissemination requirements to 10FG3, MX2T3, MN2T3, MXTPR3 and MNTPR3 (as replacement for the current 10FG, MX2T, MN2T, MXTPR, MNTPR). Users accessing these data via MARS can contact ECMWF User Support for advice on how to modify their MARS requests. |
New delivery schedule for the ENS
We plan to bring forward the schedule for the delivery of the ENS data. Further information on this will be given closer to the implementation.
Software
EMOSLIB
EMOS 443 is needed to interpolate successfully the wave energy flux mean direction (wefxd) parameter introduced at IFS cy43r1.
GRIB API
GRIB API version 1.17.0 provides full support for the new model output parameters introduced in IFS Cycle 43r1.
Older versions of GRIB API can decode the IFS Cycle 43r1 products successfully but users are advised to use at least GRIB API version 1.14.5, which provides full support for the octahedral reduced Gaussian grid.
ecCodes
ecCodes version 2.0.0 provides full support for the new model output parameters introduced in IFS Cycle 43r1.
Time-critical applications
Option 1 - simple time-critical jobs
Member State users of the "Simple time-critical jobs" framework can test that their scripts will work with the IFS cycle 43r1 test data by using the special 'events' set up for this purpose:
1633 | e_ms090 | At this stage, the e-suite step 090 (HRES-BC) has been generated. |
1634 | e_ms144 | At this stage, the e-suite step 144 (ENS-BC) has been generated. |
1635 | e_ms240 | At this stage, the e-suite step 240 (HRES) has been generated. |
1636 | e_ms360 | At this stage, the e-suite step 360 (ENS) has been generated. |
1637 | e_mslaw | At this stage, the e-suite step law (HRES-SAW) has been generated. |
1638 | e_ms1104 | At this stage, the e-suite step 1104 (ENS-MOFC) has been generated. |
1639 | msrefc | At this stage, the e-suite step refc (REFORECAST) has been updated. |
For these events, MSJ_EXPVER environment variable is set to 0070 and can be used to specify the IFS cycle 43r1 test data any MARS retrievals.
These events are intended for testing technical aspects only and should not be used for operational forecasting.
Options 2 and 3
Option 2 or 3 time-critical applications can be tested with the IFS cycle 43r1 test data retrieved from MARS or received in Dissemination.
Availability of test data from the IFS Cycle 43r1 test suites
Anchor | ||||
---|---|---|---|---|
|
Test data from the IFS Cycle 43r1 test suites are available in MARS. The data are available with experiment version 0070 (MARS keyword EXPVER=0070) starting from 06 UTC on 10 August 2016. As of 25 October 2016, the data are produced from the release candidate testing stage.
The data can be accessed in MARS from:
- HRES (class=od, stream=oper, expver=70)
- Wave HRES (class=od, stream=wave, expver=70)
- ENS (class=od, stream=enfo, expver=70)
- 00 UTC cycle only
- ENS Wave (class=od, stream=waef, expver=70)
- 00 UTC cycle only
Only registered users of ECMWF computing systems will be able to access the test data sets in MARS.
The data can should not be used for operational forecasting. Please report any problems you find with this data to User Support.
Anchor | ||||
---|---|---|---|---|
|
IFS cycle 43r1 test data from the release candidate testing stage is available through the test dissemination system. All new model output parameters can be requested.
How to request dissemination of IFS cycle 43r1 test data
The IFS cycle 43r1 test products are available on the ECPDS as version number 70. The test products are generated daily, shortly behind real-time from both the 00UTC and 12UTC runs and based on the IFS cycle 43r1 test data for HRES, ENS, WAM, ENS_WAM and HRES-SAW.
Users of ECMWF dissemination products can trigger transmission of test products by logging in to the test ECPDS system at https://ecpds-xmonitor.ecmwf.int/ in the usual manner. In order to receive the test products, users have to have their firewall open to the relevant ECPDS Data Movers:
Should you require any assistance with IFS cycle 43r1 test dissemination products, Member and Cooperating states should contact Unknown User (maj) and Commercial customers should contact Data Services.
Anchor | ||||
---|---|---|---|---|
|
Forecast users can use ecCharts to inspect the IFS cycle 43r1 test data and compare with the operational forecast. This facility is provided for testing purposes: the 43r1 test charts should not be relied upon for operational forecasting. Note in particular that the availability and timeliness of the 43r1 test data will vary, and can be considerably delayed with respect to the operational schedule. Any plot containing 43r1 test data will, therefore, be late compared to operational products.
Some of the new model output fields will be added to ecCharts when ready.
The following layers are missing for the new cycle and will become available on 26 October 2016:
- Wind speed related layers
- Minimum 2 metre temperature and Maximum 2 metre temperature
- 850 hPa wet bulb potential temperature
IFS cycle 43r1 release candidate test data is accessible via the ecCharts layers menu, identified by the label "(Esuite: 0070)".
ENS meteograms based on IFS cycle 43r1 test data
ENS Meteograms based on IFS cycle 43r1 test data are available. They can be plotted by choosing 'New cycle (IFS43r1)' under the Experiment tab on the interactive page ENS meteogram page provided under the ECMWF Forecast Charts page.
Further Reading
Document versions
Date | Reason for update |
---|---|
19.09.2016 |
|
22.09.2016 |
|
04.10.2016 |
|
18.10.2016 |
|
24.10.2016 |
|