Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Gaussian grid descriptions

...

Section

Gaussian grid descriptions

Descriptions of the Gaussian grids introduced for the horizontal resolution upgrade at IFS cy42r1 and used for HRES and ENS are available:

The descriptions provide the latitude values and the number of longitude points at each latitude for both the standard and octahedral reduced Gaussian grids.

The number of points at each latitude is encoded as the PL array in the Grid description section of the GRIB header of a grid point field.  This is accessible with grib_api using the pl key.

 

 

 

Section

Some background

Spectral representation of the IFS

The IFS uses a spectral transform method to solve numerically the equations governing the spatial and temporal evolution of the atmosphere.  The idea is to fit a discrete representation of a field on a grid by a continuous function.  This is achieved by expressing the function as a truncated series of spherical harmonics:

Mathdisplay
\begin{equation*}
A(\lambda,\mu,\eta,t) = \sum_{l=0}^{\mbox{T}} \sum_{|m|\leq l}^{\mbox{T}}  \psi_{lm}(\eta,t) Y_{lm}(\lambda,\mu)
\end{equation*}

where μ = sinθ with λ  the longitude and θ the latitude of the grid point, T is the spectral truncation number and Y lm are the spherical harmonic functions.

The spectral coefficients ψlm are computed from the discrete values known at each point of a Gaussian grid on the sphere by

  • a Fast Fourier Transform in the zonal direction followed by
  • a slow/fast Legendre transform in the meridional direction.

At each time step in the IFS:

  • derivatives, semi-implicit correction and horizontal diffusion are computed in spectral space;
  • explicit dynamics, semi-Lagrangian advection and physical parametrizations are computed in grid point space.

The representation in grid point space is on the Gaussian grid.  The grid point resolution is determined by the spectral truncation number, T.

...