Page History
...
Let us assume here that the radar-derived totals shown are accurate, and also indicate what would have been measured locally by raingauges. Then we consider the ENS gridbox highlighted. Within this box, whilst the gridbox average rainfall total is about 17mm, the minimum and maximum rainfall amounts are about 2mm and 60mm respectively. This implies a lot of sub-grid variability. A completely accurate ENS member forecast would predict 17mm. But clearly this of itself would give the user no idea that locally there was much more (and indeed much less) than this amount. And to cause flash floods, as were observed, probably a 17mm total, locally, would not have been sufficient. The point rainfall aims to estimate the range of totals likely within the gridbox, and indeed deliver probabilities for different point values within that gridbox (albeit without saying where the largest and smallest amounts are likely to be). In other scenarios (e.g. frontal) rainfall totals will be much more uniform across gridboxesgrid boxes, but there are also recorded instances of even larger sub-grid variability. An unusual event in southern Spain in 2018 lead to a range of 12h rainfall in one ENS gridbox from 0 to ~350mm.
...
As with any post-processing system ecPoint has to be calibrated. For this it uses short-range Control run forecasts of 12h rainfall covering one year (the "training period"), which are individually compared with rainfall observations, for the same times, within the respective gridboxesgrid boxes. The full procedure is not described here, but involves segregation according to gridbox-weather-types, which each have different sub-grid variability structures and/or different bias corrections associated. The 12h point rainfall system introduced into operations in April 2019 incorporated 214 such types. The type definitions are currently based on the following parameters: convective rainfall fraction, total 12h precipitation forecast, 700hPa wind speed, CAPE, 24h clear-sky solar radiation.
...