Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  • smaller lakes may not be captured.
  • some lakes or inland seas vary in size and meteorological impact due to human or seasonal effects (e.g. the Sea of Azov where the depth varies substantially with the seasons).
  • some islands may be missed altogether (e.g. El Hierro in the Canary Islands Malfa or Stromboli).


See also the discussion on the impact of the land-sea mask on the derivation of Meteograms which also uses the examples shown below.  

...

Examples of grid point distribution and the effect on energy flux computation

...

  • Any location on and around the island within the green box will be represented by the single grid point near the centre.  Within the grid box the land fraction is about 90% and the water fraction about 10%.  Therefore HTESSEL will supply ~90% and FLake (rather than NEMO, because the land fraction >50%) supply ~10%.
  • Locations on the island in the blue boxes will be represented by the corresponding grid points to the south or west.  Within these grid boxes the land fraction is about 10%, and the water fraction about 90%.  Therefore HTESSEL supply ~10% of the flux information and NEMO (rather than FLake, because the land fraction is <50% and the location is not a lake) will supply ~90%.
  • Locations to the north of the island in the turquoise area will be represented by the grid points to the north and northeast.  Within these grid boxes the land fraction is about 60% land and the water fraction about 40%.   Therefore HTESSEL will supply ~60% of the flux information and FLake (rather than NEMO, because the land fraction >50%) will supply about 40%.

...

  • .

...


Lake area - Lake Geneva.


Fig2.1.8A: ENS grid points around Lake Geneva.  Only one grid box has less than 50% land (blue) and any land locations within that box will be considered as if over water.  FLake is used here because the lake dataset tells the IFS that this is a lake and not open ocean (i.e. different to the Southern England case shown above).  The other turquoise shades show the proportion of land cover within the each box and define the proportional influence of the FLake and HTESSEL for any land point within the grid box.  For example, a point on the northeast coast of the lake will use ~60% HTESSEL and ~40% FLake for evaluation of fluxes.Fig2.1.8B:HRES* grid points around Lake Geneva.  Much more detail is captured by the grid and a more realistic representation of the influences of land and water within each grid box.  NEMO is not used at all here because the waters are classed as a lake and not open ocean.


Island Areas - Canary Islands.

Fig2.1.9A: ENS grid points around the Canary Islands.  Note several island points have a fairly high proportion of sea in their grid box, and some points on islands have no land within their grid box and are considered as sea points because their grid box has <50% land cover.  The island of El Hierro (westernmost island on the plot) is not captured at all.  Because this is an open ocean area in ENS all blue boxes on these plots NEMO is used to provide oceanic fluxes; all turquoise and dark green boxes use FLake and HTESSEL

Small Islands - Isole Eolie

Image Added

Fig2.1.9B10:HRES*  ENS grid points around the Canary Islandssouthwest Italy.   Note there are many more points wholly on land.  The island of El Hierro has one wholly land point and three partial land points with sea influence. Because this is an open ocean area in HRES* all blue boxes on these plots use model sea-surface temperature data; all turquoise and dark green boxes use FLake and HTESSEL.

Small Islands - Isole Eolie

Image RemovedRectangles surrounding each grid point are coloured according to the "fraction of land cover" assigned to each grid point and shown by the scale on the right.  Within each rectangle all locations are considered to have the same values.  The fluxes of heat, moisture and momentum which in turn determine the surface values of temperature, dewpoint and wind at the grid point are calculated using the proportion of land (where HTESSEL will be used) and coastal water (where FLake will be used), or NEMO alone for grid points over open sea.  Locations mentioned below are marked on the diagram.  Note all the islands have no land points and FLake will be used exclusively to assess fluxes of heat, moisture and momentum which may not describe conditions sufficiently on land.