Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Computing incoming solar radiation for each shortwave g point: The solar constant for the band is weighted by the gaussian weight. The Coddington Insolation Spectrum is used.  

 SOCRATES

Reference(s): There is no definitive paper; the code was initially written by Mark Ringer and John Edwards for the simulation of satellite channel radiances (Ringer et al., 2003: http://dx.doi.org/10.1256/qj.02.61), but it was subsequently heavily modified by James Manners for use in the Met Office Global Atmosphere configurations (e.g. Walters et al., 2019: https://gmd.copernicus.org/articles/12/1909/2019/), and with David Amundsen for use in Exoplanet configurations (Amundsen et al., 2014: http://dx.doi.org/10.1051/0004-6361/201323169).

Implementation details: Fortran 2003, 3-clause BSD licence. Free to use/develop.

Selecting band boundaries: Band boundaries are chosen principally to minimize the number of major gases in each band (ideally one). Also, the surface, clouds, aerosols, Rayleigh scattering and the Planck emission all use band-average properties.

Line-by-line model: Line-by-line absorption coefficients are generated internally using HITRAN line-lists or cross-sections as input. It is also possible to use absorption data in an input netCDF file that has been generated externally by, for example, LBLRTM or ExoCross.

Reordering spectrum: An optimal mapping is done using the reordering of effective absorption coefficients from the top-of-atmosphere down to an optical depth of one. This is used for the g-space partitioning and calculation of weights. A new reordering is then done separately for each pressure and temperature in the look-up table to calculate the actual k-terms used for each g-point at a given pressure and temperature (P/T).

Choosing number of g points: Can be specified manually or automated to arrive at the number of g-points that will bring the error in transmission below a given tolerance for each gas and band separately.

Partitioning g space for one gas: g-space is partitioned using the effective absorption coefficients (see ‘re-ordering spectrum’ above). The points are determined to give an equal spacing in the log of the absorption, with extra consideration given to the first point (least absorption) where an assumption is made for the range that can be taken as ‘grey’. Points are combined if there are no data within a given interval. Optionally, this partitioning can be preceded by splitting the absorption coefficients into three groups according to whether their absorption peaks at the top-of-atmosphere, mid-atmosphere or surface (with groups being automatically combined where absorption is very weak). This is a way of overcoming the inaccuracies due to the 'correlated' assumption in the correlated k-distribution method.

Partitioning g space for multiple gases: Not done. Gas k-terms are kept separate in the configuration, but the ‘optimal mapping’ is saved to the spectral file for potential use within the radiative transfer solver for the method of ‘exact-major overlap’.

Computing absorption of one gas: The k-term for a given g partition at a given P/T is found by determining the absorption that would give the smallest error in transmission for a range of path-lengths up to a maximum path-length supplied. Pressure/temperature dependence of absorption is handled in a look-up table. The concentration dependence of the water vapour continuum and collision-induced absorption are handled separately (two methods are available, each assuming only a dependence on concentration and temperature, not pressure).

Computing combined absorption of multiple gases: . Gas overlap is assumed to be random for the method of Equivalent Extinction (see Edwards, 1996: http://dx.doi.org/10.1175/1520-0469(1996)053%3C1921:ECOIFA%3E2.0.CO;2, or more concisely Amundsen et al., 2017: http://dx.doi.org/10.1051/0004-6361/201629322, section 3.3, which also covers the shortwave treatment). A reference method of ‘Exact-major overlap’ is also available that considers the spectral overlap with the major gas exactly using the ‘optimal mapping’ for each gas.

Computing Planck function for each longwave g point: Planck function is computed for the band and applied according to the g-point weights.

Computing incoming solar radiation for each shortwave g point: g-point weights are calculated using a solar spectral weighting (the exact spectrum used depends on configuration – the GA7 configuration uses NRLSSI data meaned over the period 2000-2011). The solar flux per band and the g-point weights can be varied at runtime according to a varying solar spectrum.