...
Have a look in the solutions folder and edit and run the script netcdf_to_pandas.py. This shows how to extract some metadata from the previous netCDF file, and also some value arrays and convert into a pandas dataframe. The code is also here:
Code Block | ||||
---|---|---|---|---|
| ||||
import metview as mv import pandas as pd nc = mv.read("madis-maritime.nc") # print some global fields print('Variables: \n', nc.variables()) print('Global attributes: \n', nc.global_attributes()) # extract certain variables - setcurrent() followed by values() nc.setcurrent('latitude') lats = nc.values() nc.setcurrent('longitude') lons = nc.values() nc.setcurrent('temperature') temps = nc.values() print('temperature attributes: \n', nc.attributes()) # create a dictionary in order to convert to pandas pddict = {'latitude' : lats, 'longitude' : lons, 'temperature' : temps} df = pd.DataFrame(pddict) print('Dataframe: \n', df) print('temperature describe: \n', df.temperature.describe()) |