...
If time, change the date/time used to compute the clusters. How does the variance explained by the first two clusters change? Is geopotential the best parameter to use?
...
Panel | ||||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
|
...
please see the Appendix. |
Exercise 5: Assessment of forecast errors
In this exercise, the analyses covering the forecast period are now available to see how Nadine and the cut-off low actually behaved.
Various methods for presenting the forecast error are used in the tasks below. The clusters created in the previous exercise can also be used.
Enter the 'Forecast errors
' folder in the openifs_2018
folder to start work on this exercise.
Task 1: Analyses from 20th September
Now look at the analyses from 20th September to observe what actually happened.
Right-click an_1x1.mv
, Edit and set the plot to show MSLP and geopotential at 500hPa:
Code Block |
---|
plot1=["z500.s","mslp"] |
Click the play button and animate the plot to watch how Nadine and the cut-off low behave.
Drop the mv_track.mv
icon to overlay the track of Nadine onto the map.
If time, use the other icons such as an_2x2.mv
and an_xs.mv
to look at the cross-section through the analyses and compare to the forecast cross-sections from the previous exercises.
Task 2: RMSE "plumes" for the ensemble
This is similar to the previous exercise, except the RMSE curves for all the ensemble members from a particular forecast will be plotted.
Right-click the ens_rmse.mv icon, select 'Edit' and plot the curves for 'mslp' and 'z500'.
Change 'expID' for your choice of ensemble (either ens_oper or ens_2016).
Clusters
First plot the plumes with clustering off:
Code Block | ||||
---|---|---|---|---|
| ||||
clustersId="off" |
There might be some evidence of clustering in the ensemble plumes.
There might be some individual forecasts that give a lower RMS error than the control forecast.
Next, use the cluster files created from the earlier exercise. You can use either your own created cluster file as before, or use the EOF generated file.
For example:
Code Block |
---|
clustersId="eof" |
would use the cluster definitions in the file: ens_oper_cluster.eof.txt (for the 2012 operational ensemble).
The cluster files are 'linked' from the Cluster folder, but if they do not work, just copy the cluster file (e.g. ens_oper_cluster.eof.txt) to the Forecast_errors folder.
Panel | ||
---|---|---|
| ||
Q. How do the HRES, ensemble control forecast and ensemble mean compare? |
Task 3: Difference stamp maps
Use the stamp_diff.mv plot to look at the differences between the ensemble members and the analysis. It can be easier to understand the difference in the ensembles by using difference stamp maps.
Note, stamp_diff.mv
cannot be used for 'tp' as there is no precipitation data in the analyses.
Clustering can also be enabled for this task
Change:
Code Block |
---|
clusterNum=2 |
to
Code Block |
---|
clusterNum=3 |
Now if you run the eof.mv
macro, it will generate a text file, such as ens_oper.eof.txt
with 3 lines, one for each cluster. It will also show the 3 clusters as different colours.
You can use the 3 clusters in the cluster_to_ref.mv
macro, for example:
Code Block |
---|
param="z500.s"
expId="ens_oper"
members_1=["cl.eof.1"]
members_2=["cl.eof.3"] |
would plot the mean of the members in the first and the third clusters (it's not possible to plot all three clusters together).
You can have as many clusters as you like but it does not make sense to go beyond 3 or 4 clusters.
Panel | ||
---|---|---|
| ||
For those interested: The code that computes the clusters can be found in the Python script: This uses the 'ward' cluster method from SciPy. Other cluster algorithms are available. See http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage The python code can be changed to a different algorithm or the more adventurous can write their own cluster algorithm! |
Exercise 5: Assessment of forecast errors
In this exercise, the analyses covering the forecast period are now available to see how Nadine and the cut-off low actually behaved.
Various methods for presenting the forecast error are used in the tasks below. The clusters created in the previous exercise can also be used.
Enter the 'Forecast errors
' folder in the openifs_2018
folder to start work on this exercise.
Task 1: Analyses from 20th September
Now look at the analyses from 20th September to observe what actually happened.
Right-click an_1x1.mv
, Edit and set the plot to show MSLP and geopotential at 500hPa:
Code Block |
---|
plot1=["z500.s","mslp"] |
Click the play button and animate the plot to watch how Nadine and the cut-off low behave.
Drop the mv_track.mv
icon to overlay the track of Nadine onto the map.
If time, use the other icons such as an_2x2.mv
and an_xs.mv
to look at the cross-section through the analyses and compare to the forecast cross-sections from the previous exercises.
Task 2: RMSE "plumes" for the ensemble
This is similar to the previous exercise, except the RMSE curves for all the ensemble members from a particular forecast will be plotted.
Right-click the ens_rmse.mv icon, select 'Edit' and plot the curves for 'mslp' and 'z500'.
Change 'expID' for your choice of ensemble (either ens_oper or ens_2016).
Clusters
First plot the plumes with clustering off:
Code Block | ||||
---|---|---|---|---|
| ||||
clustersId="off" |
There might be some evidence of clustering in the ensemble plumes.
There might be some individual forecasts that give a lower RMS error than the control forecast.
Next, use the cluster files created from the earlier exercise. You can use either your own created cluster file as before, or use the EOF generated file.
For example:
Code Block |
---|
clustersId="eof" |
would use the cluster definitions in the file: ens_oper_cluster.eof.txt (for the 2012 operational ensemble).
The cluster files are 'linked' from the Cluster folder, but if they do not work, just copy the cluster file (e.g. ens_oper_cluster.eof.txt) to the Forecast_errors folder.
Panel | ||
---|---|---|
| ||
Q. How do the HRES, ensemble control forecast and ensemble mean compare? |
Task 3: Difference stamp maps
Use the stamp_diff.mv plot to look at the differences between the ensemble members and the analysis. It can be easier to understand the difference in the ensembles by using difference stamp maps.
Note, stamp_diff.mv
cannot be used for 'tp' as there is no precipitation data in the analyses.
Clustering can also be enabled for this task.
Panel | ||
---|---|---|
| ||
Q. Using the stamp and stamp difference maps, study the ensemble. Identify which ensembles produce "better" forecasts. |
Appendix
...
Info |
---|
The macros described in this tutorial can write PostScript and GIF image files to the To save the images, use the 'Execute' menu option on the icon, rather than 'Visualise'. The 'okular' command can be used to view the PDF & gif images. |
To save any other images during these exercises for discussion later, you can either use:
"Export" button in Metview's display window under the 'File' menu to save to PNG image format. This will also allow animations to be saved into postscript.
or use the ksnapshot
command to take a 'snapshot' of the screen and save it to a file.
If you want to create animations from other images, save the figures as postscript and then use the convert
command:
Code Block |
---|
convert -delay 75 -rotate "90<" in.ps out.gif |
Additional tasks of exercise 1
...
Using the stamp and stamp difference maps, study the ensemble. Identify which ensembles produce "better" forecasts. |
Appendix
Anchor | ||||
---|---|---|---|---|
|
Info |
---|
The macros described in this tutorial can write PostScript and GIF image files to the To save the images, use the 'Execute' menu option on the icon, rather than 'Visualise'. The 'okular' command can be used to view the PDF & gif images. |
To save any other images during these exercises for discussion later, you can either use:
"Export" button in Metview's display window under the 'File' menu to save to PNG image format. This will also allow animations to be saved into postscript.
or use the ksnapshot
command to take a 'snapshot' of the screen and save it to a file.
If you want to create animations from other images, save the figures as postscript and then use the convert
command:
Code Block |
---|
convert -delay 75 -rotate "90<" in.ps out.gif |
Additional tasks of exercise 1
Anchor | ||||
---|---|---|---|---|
|
Right-click on an_1x1.mv
icon and select 'Edit'.
In the edit window that appears you can see the map types available covering a different area:
Code Block | ||||
---|---|---|---|---|
| ||||
#Map type: 0=Atl-an, 1: Atl-fc, 2: France
mapType=0 |
With mapType=0
, the map covers a large area centred on the Atlantic suitable for plotting the analyses and track of the storm (this area is only available for the analyses).
With mapType=1
, the map also covers the Atlantic
Right-click on an_1x1.mv
icon and select 'Edit'.
In the edit window that appears you can see the map types available covering a different area:
Code Block | ||||
---|---|---|---|---|
| ||||
#Map type: 0=Atl-an, 1: Atl-fc, 2: France
mapType=0 |
With mapType=0
, the map covers a large area centred on the Atlantic suitable for plotting the analyses and track of the storm (this area is only available for the analyses).
With mapType=1
, the map also covers the Atlantic but a smaller area than for the analyses. This is because the forecast data in the following exercises does not cover as large a geographical area as the analyses.
...
Panel | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Additional tasks of exercise 4
Anchor | ||||
---|---|---|---|---|
|
To change the number of clusters created by the EOF analysis, edit eof.mv.
Change:
Code Block |
---|
clusterNum=2 |
to
Code Block |
---|
clusterNum=3 |
Now if you run the eof.mv
macro, it will generate a text file, such as ens_oper.eof.txt
with 3 lines, one for each cluster. It will also show the 3 clusters as different colours.
You can use the 3 clusters in the cluster_to_ref.mv
macro, for example:
Code Block |
---|
param="z500.s"
expId="ens_oper"
members_1=["cl.eof.1"]
members_2=["cl.eof.3"] |
would plot the mean of the members in the first and the third clusters (it's not possible to plot all three clusters together).
You can have as many clusters as you like but it does not make sense to go beyond 3 or 4 clusters.
Panel | ||
---|---|---|
| ||
For those interested: The code that computes the clusters can be found in the Python script: This uses the 'ward' cluster method from SciPy. Other cluster algorithms are available. See http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage The python code can be changed to a different algorithm or the more adventurous can write their own cluster algorithm! |
Further reading
...
We gratefully acknowledge the following for their contributions in preparing these exercises. From ECMWF: Glenn Carver, Gabriella Szepszo, Sandor Kertesz, Linus Magnusson, Iain Russell, Simon Lang, Filip Vana. From ENM/Meteo-France: Frédéric Ferry, Etienne Chabot, David Pollack and Thierry Barthet for IT support at ENM.
Excerpt Include | ||||||
---|---|---|---|---|---|---|
|
...