Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Key parameters: MSLP and z500.  We suggest concentrating on viewing these fields. If time, visualize other parameters (e.g. PV320K).

Available plot types
Panel


Image RemovedImage Added

this will plot (a) the mean of the ensemble forecast, (b) the ensemble spread, (c) the HRES deterministic forecast and (d) the control forecast.

this plots a 'spaghetti map' for a given parameter for the ensemble forecasts compared to the reference HRES forecast. Another way of visualizing ensemble spread. 

 this plots a vertical cross-section through the forecasts in the same way as the cross-section plots for the analyses

.

 this plots all of the ensemble forecasts for a particular field and lead time. Each forecast is shown in a stamp sized map. Very useful for a quick visual inspection of each ensemble forecast.

Additional plots for further study

Image Modified

this useful macro allows two individual ensemble forecasts to be compared to the control forecast. As well as plotting the forecasts from the members, it also shows a difference map for each.

Image Modified

this will plot the difference between the ensemble control, ensemble mean or an individual ensemble member and the HRES forecast for a given parameter.

Image Removed

this comprehensive macro produces a single map for a given parameter. The map can be either: i/ the ensemble mean, ii/ the ensemble spread, iii/ the control forecast, iv/ a specific perturbed forecast, v/ map of the ensemble probability subject to a threshold, vi/ ensemble percentile map for a given percentile value. For example, it is possible to plot of a map showing the probability that MSLP would be below 995hPa.

Image Removed

this macro can be used to plot the difference for two ensemble members against the HRES forecasts. As ensemble perturbations are applied in +/- pairs, using this macro it's possible to see the nonlinear development of the members and their difference to the HRES forecast.

Group working

If working in groups, each group could follow the tasks below with a different ensemble forecast. e.g. one group uses the 'ens_oper', another group uses 'ens_2016'.

Choose your ensemble dataset by setting the value of 'expId', either 'ens_oper' or 'ens_2016' for this exercise.


Group working

If working in groups, each group could follow the tasks below with a different ensemble forecast. e.g. one group uses the 'ens_oper', another group uses 'ens_2016'.

Choose your ensemble dataset by setting the value of 'expId', either 'ens_oper' or 'ens_2016' for this exercise.

Code Block
languagebash
titleEnsemble forecast datasets available in the macros
#The experiment. Possible values are:
# ens_oper = operational ENS
# ens_2016 = 2016 operational ENS

expId="ens_oper"
Ensemble forecast uncertainty

In these tasks, the performance of the ensemble forecast is studied.

Panel
borderColorred
titleQuestions to consider

Q. How does the ensemble mean MSLP and Z500 fields compare to the HRES forecast?
Q. Examine the initial diversity in the ensemble and how the ensemble spread and error growth develops.  What do the extreme forecasts look like?

Task 1: Ensemble spread

Use the ens_maps.mv icon and plot the MSLP and z500. This will produce plots showing: the mean of all the ensemble forecasts, the spread of the ensemble forecasts and the operational HRES deterministic forecast.

Change 'expId' if required to select either the 2012 ensemble expId="ens_oper" or the reforecast ensemble expId="ens_2016".

Animate this plot to see how the spread grows.

This macro can also be used to look at clusters of ensemble members. It will be used later in the clustering tasks. For this task, make sure all the members of the ensemble are used.

Code Block
languagebash
titleEnsemble forecast datasets available in the macros
#The experiment. Possible values are:
# ens_oper = operational ENS
# ens_2016 = 2016 operational ENS

expId="ens_oper"

Ensemble forecast uncertainty

...

Use all ensemble members in this task:
#ENS members (use ["all"] or a list of members like [1,2,3]
members=["all"]        #[1,2,3,4,5] or ["all"] or ["cl.example.1"]


Panel
borderColorredtitleQuestions to consider

Q. How When does the ensemble mean MSLP and Z500 fields compare to the HRES forecast?
Q. Examine the initial diversity in the ensemble and how the ensemble spread and error growth develops.  What do the extreme forecasts look like?

Task 1: Ensemble spread

Use the ens_maps.mv icon and plot the MSLP and z500. This will produce plots showing: the mean of all the ensemble forecasts, the spread of the ensemble forecasts and the operational HRES deterministic forecast.

Change 'expId' if required to select either the 2012 ensemble expId="ens_oper" or the reforecast ensemble expId="ens_2016".

Animate this plot to see how the spread grows.

spread grow the fastest during the forecast?

Task 2: Visualise ensemble members

Stamp maps are used to visualise all the ensemble members as normal maps. These are small, stamp sized contour maps plotted for each ensemble member using a small set of contours.

Use stamp.mv to plot the MSLP and z500 fields in the ensemble.

The stamp map is slow to plot as it reads a lot of data. Rather than animate each forecast step, a particular date can be set by changing the 'steps' variableThis macro can also be used to look at clusters of ensemble members. It will be used later in the clustering tasks. For this task, make sure all the members of the ensemble are used.

Code Block
languagebash
titleUse all ensemble members in this task:
#ENS members (use ["all"] or a list of members like [1,2,3]
members=["all"]        #[1,2,3,4,5] or ["all"] or ["cl.example.1"]
Panel
borderColorred

Q. When does the ensemble spread grow the fastest during the forecast?

Task 2: Visualise ensemble members

Stamp maps are used to visualise all the ensemble members as normal maps. These are small, stamp sized contour maps plotted for each ensemble member using a small set of contours.

Use stamp.mv to plot the MSLP and z500 fields in the ensemble.

The stamp map is slow to plot as it reads a lot of data. Rather than animate each forecast step, a particular date can be set by changing the 'steps' variable.

Code Block
languagebash
titleSet date/time to 24-09-2012 00Z
#Define forecast steps
steps=[2012-09-24 00:00,"to",2012-09-24 00:00,"by",6]

Make sure clustersId="off" for this task. Clustering will be used later.

Compare ensemble members to the deterministic and control forecast

After visualizing the stamp maps, it can be useful to animate a comparison of individual ensemble members to the HRES and ensemble control deterministic forecasts.

This can help in identifying individual ensemble members that produce a different forecast than the control or HRES forecast.

Use the ens_to_ref_diff.mv icon to compare an ensemble member to the HRES forecast. Use pf_to_cf_diff.mv to compare ensemble members to the control forecast.

...

titleUse ens_to_ref_diff to compare an ensemble member to the HRES forecast

 To animate the difference in MSLP of an individual ensemble member 30 to the HRES forecast, edit the lines:

Code Block
param="mslp"
ensType="pf30"

and visualise the plot.

To compare the control forecast, change:

Code Block
ensType="cf"
Set date/time to 24-09-2012 00Z
#Define forecast steps
steps=[2012-09-24 00:00,"to",2012-09-24 00:00,"by",6]

Make sure clustersId="off" for this task. Clustering will be used later.

Compare ensemble members to the deterministic and control forecast

After visualizing the stamp maps, it can be useful to animate a comparison of individual ensemble members to the HRES and ensemble control deterministic forecasts.

This can help in identifying individual ensemble members that produce a different forecast than the control or HRES forecast.

Use the ens_to_ref_diff.mv icon to compare an ensemble member to the HRES forecast. Use pf_to_cf_diff.mv to compare ensemble members to the control forecast.

Panel
titleUse ens_to_ref_diff to compare an ensemble member to the HRES forecast

 To animate the difference in MSLP of an individual ensemble member 30 to the HRES forecast, edit the lines:

Code Block
param="mslp"
ensType="pf30"

and visualise the plot.

To compare the control forecast, change:

Code Block
ensType="cf"



Panel
titleUse pf_to_cf_diff.mv to compare two ensemble members to the control forecast

This will show the forecasts from the ensemble members and also their difference with the ensemble control forecast.

To animate the difference in MSLP with ensemble members '30' and '50', set:

Code Block
param="mslp"
pf=[30,50]



Panel
borderColorred
borderStylesolid

Compare the control forecast scenario to the HRES:

Q. Try to identify ensemble members which are the closest and furthest to the HRES forecast.
Q. Try to identify ensemble members which are the closest and furthest to the ensemble control forecast.

Sea-surface temperature

Compare the SST parameter used for the ens_oper and ens_2016 ensemble forecasts. The 2016 reforecast of this case study used a coupled ocean model unlike the 2012 ensemble and HRES forecast that used climatology for the first 5 days.

Panel
borderColorred

Q. What is different about SST between the two ensemble forecasts?

 

Panel
borderColorgreen
titleColorgreen
borderStyledashed
titleAdditional tasks

Anchor
forfurtherplots
forfurtherplots
To study the ensemble forecast further please see the Appendix.

Exercise 4: Cluster analysis

The paper by Pantillon et al, describes the use of clustering to identify the main scenarios among the ensemble members.

Using clustering will highlight the ensemble members in each cluster in the plots.

In this exercise you will:

  • Construct your own qualitative clusters by choosing members for two clusters.
  • Generate clusters using principal component analysis.

Image Added

Enter the folder 'Clusters' in the openifs_2018 folder to begin working.

Task 1: Create your own clusters

Clusters can be created manually from lists of the ensemble members.

Choose members for two clusters. The stamp maps are useful for this task.

From the stamp map of z500 at 24/9/2012 (t+96), identify ensemble members that represent the two most likely forecast scenarios.

It is usual to create clusters from z500 as it represents the large-scale flow and is not a noisy field. However, for this particular case study, the stamp map of 'tp' (total precipitation) over France is also very indicative of the distinct forecast scenarios. 

You can choose any parameter to construct the clusters from, if you think another parameter shows a clear clustering behaviour.

How to create your own cluster

Image Added

Right-click 'ens_oper_cluster.example.txt' and select Edit (or make a duplicate)

The file contains two example

...

titleUse pf_to_cf_diff.mv to compare two ensemble members to the control forecast

This will show the forecasts from the ensemble members and also their difference with the ensemble control forecast.

To animate the difference in MSLP with ensemble members '30' and '50', set:

Code Block
param="mslp"
pf=[30,50]
Panel
borderColorred
borderStylesolid

Compare the control forecast scenario to the HRES:

Q. Try to identify ensemble members which are the closest and furthest to the HRES forecast.
Q. Try to identify ensemble members which are the closest and furthest to the ensemble control forecast.

Sea-surface temperature

Compare the SST parameter used for the ens_oper and ens_2016 ensemble forecasts. The 2016 reforecast of this case study used a coupled ocean model unlike the 2012 ensemble and HRES forecast that used climatology for the first 5 days.

Panel
borderColorred

Q. What is different about SST between the two ensemble forecasts?

 

Exercise 4: Cluster analysis

The paper by Pantillon et al, describes the use of clustering to identify the main scenarios among the ensemble members.

Using clustering will highlight the ensemble members in each cluster in the plots.

In this exercise you will:

  • Construct your own qualitative clusters by choosing members for two clusters.
  • Generate clusters using principal component analysis.

Image Removed

Enter the folder 'Clusters' in the openifs_2018 folder to begin working.

Task 1: Create your own clusters

Clusters can be created manually from lists of the ensemble members.

Choose members for two clusters. The stamp maps are useful for this task.

From the stamp map of z500 at 24/9/2012 (t+96), identify ensemble members that represent the two most likely forecast scenarios.

It is usual to create clusters from z500 as it represents the large-scale flow and is not a noisy field. However, for this particular case study, the stamp map of 'tp' (total precipitation) over France is also very indicative of the distinct forecast scenarios. 

You can choose any parameter to construct the clusters from, if you think another parameter shows a clear clustering behaviour.

How to create your own cluster

Image Removed

Right-click 'ens_oper_cluster.example.txt' and select Edit (or make a duplicate)

The file contains two example lines:

Code Block
1#   2  3  4  9  22 33 40
2#   10 11 12 31 49

...

Panel
borderColorred

Q. What do you notice about the SST field?notice about the SST field?

Back to the tutorial

Additional tasks of exercise 2

Anchor
precipitation
precipitation
Precipitation over France

Choose a hres macro (hres_1x1 or hres_2x2) and plot the total precipitation (parameter: tp), near surface wind field (parameter: wind10), relative humidity (parameter: r).

Change the area to France by setting 'maptype=2' in the macro script.

Back to the tutorial

Additional tasks of exercise 2

...

Choose a hres macro (hres_1x1 or hres_2x2) and plot the total precipitation (parameter: tp), near surface wind field (parameter: wind10), relative humidity (parameter: r).

Change the area to France by setting 'maptype=2' in the macro script.

Back to the tutorial

...

Anchor
vertical
vertical
Vertical structure and forecast evolution

This task focuses on the fate of Nadine and examines vertical PV cross-sections of Nadine and the cut-off low at different forecast times.

Right-click on the icon 'hres_xs.mv' icon, select 'Edit' and push the play Image Addedbutton.

The plot shows the cross-section for the 22nd September, (day 2 of the forecast), for potential vorticity (PV), wind vectors projected onto the plane of the cross-section and potential temperature drawn approximately through the centre of the Hurricane and the cut-off low. The red line on the map of MSLP shows the location of the cross-section.

Panel
borderColorred
borderStylesolid

Q. Look at the PV field, how do the vertical structures

...

of Nadine and the cut-off low

...

differ?

Changing forecast time

Cross-section data is only available every 24hrs until the 30th Sept 00Z (step 240).

This means the 'steps' value in the macros is only valid for the times:  [2012-09-20 00:00], [2012-09-21 00:00], ....  and so on to [2012-09-30 00:00].

Change the forecast time to day+6 (26th September). Nadine has now intensified as it approaches the coast.

Code Block
steps=[2012-09-26 00:00]

Changing cross-section location

Code Block
#Cross section line [ South, West, North, East ]
line = [30,-29,45,-15]

The cross-section location (red line) can be changed by editing the end points of the line as shown above.

If the forecast time is changed, the storm centres will move and the cross-section line will need to be repositioned to follow specific features. This is not computed automatically, but must be changed by altering the coordinates above. Use the cursor data icon Image Added to find the new position of the line.

Change the forecast time again to day+8 (28th September), or a different date if you are interested, relocate and plot the cross-section of Nadine and the low pressure system. Use the hres_1x1.mv icon from task 1 if you need to follow location of Nadine.

If time, try some of the other vertical cross-sections below.

Panel
borderColorred
borderStylesolid
titleQuestions to consider

Q. What changes are there to the vertical structure of Nadine during the forecast?
Q. What is the fate of the cut-off and Nadine?
Q. Does this kind of Hurricane landfall event over the Iberian peninsula happen often?

Suggestions for other vertical cross-sections

A reduced number of fields is available for cross-sections compared to the isobaric maps: temperature (t), potential temperature (pt), relative humidity (r), potential vorticity (pv), vertical velocity (w), wind-speed (speed; sqrt(u*u+v*v)) and wind vectors (wind3).

Choose from the following (note the cross-section macro hres_xs.mv uses slightly different names for the parameters).

Panel
  • "pt", "pv"              : potential temperature + potential vorticity  -  to characterize the cold core and warm core structures of Hurricane Nadine and the cut-off low.
  • "r", "w"                  : humidity + vertical motion  -  another view of the cold core and warm core structures of Hurricane Nadine and the cut-off low.
  • "pv", "w" ("r")      : potential vorticity + vertical velocity (+ relative humidity)  -  a classical cross-section to see if a PV anomaly is accompanied with vertical motion or not.

Back to the tutorial

Anchor
furtherplots
furtherplots
Additional tasks of Exercise 3

Additional plots for further study

Panel


Image Added

this plots a 'spaghetti map' for a given parameter for the ensemble forecasts compared to the reference HRES forecast. Another way of visualizing ensemble spread.

Image Added

 this plots a vertical cross-section through the forecasts in the same way as the cross-section plots for the analyses.

Image Added

this comprehensive macro produces a single map for a given parameter. The map can be either: i/ the ensemble mean, ii/ the ensemble spread, iii/ the control forecast, iv/ a specific perturbed forecast, v/ map of the ensemble probability subject to a threshold, vi/ ensemble percentile map for a given percentile value. For example, it is possible to plot of a map showing the probability that MSLP would be below 995hPa.

Image Added

this macro can be used to plot the difference for two ensemble members against the HRES forecasts. As ensemble perturbations are applied in +/- pairs, using this macro it's possible to see the nonlinear development of the members and their difference to the HRES forecast

Right-click on the icon 'hres_xs.mv' icon, select 'Edit' and push the play Image Removedbutton.

The plot shows the cross-section for the 22nd September, (day 2 of the forecast), for potential vorticity (PV), wind vectors projected onto the plane of the cross-section and potential temperature drawn approximately through the centre of the Hurricane and the cut-off low. The red line on the map of MSLP shows the location of the cross-section.

Panel
borderColorred
borderStylesolid

Q. Look at the PV field, how do the vertical structures of Nadine and the cut-off low differ?

Changing forecast time

Cross-section data is only available every 24hrs until the 30th Sept 00Z (step 240).

This means the 'steps' value in the macros is only valid for the times:  [2012-09-20 00:00], [2012-09-21 00:00], ....  and so on to [2012-09-30 00:00].

Change the forecast time to day+6 (26th September). Nadine has now intensified as it approaches the coast.

Code Block
steps=[2012-09-26 00:00]

Changing cross-section location

Code Block
#Cross section line [ South, West, North, East ]
line = [30,-29,45,-15]

The cross-section location (red line) can be changed by editing the end points of the line as shown above.

If the forecast time is changed, the storm centres will move and the cross-section line will need to be repositioned to follow specific features. This is not computed automatically, but must be changed by altering the coordinates above. Use the cursor data icon Image Removed to find the new position of the line.

Change the forecast time again to day+8 (28th September), or a different date if you are interested, relocate and plot the cross-section of Nadine and the low pressure system. Use the hres_1x1.mv icon from task 1 if you need to follow location of Nadine.

If time, try some of the other vertical cross-sections below.

Panel
borderColorred
borderStylesolid
titleQuestions to consider

Q. What changes are there to the vertical structure of Nadine during the forecast?
Q. What is the fate of the cut-off and Nadine?
Q. Does this kind of Hurricane landfall event over the Iberian peninsula happen often?

Suggestions for other vertical cross-sections

A reduced number of fields is available for cross-sections compared to the isobaric maps: temperature (t), potential temperature (pt), relative humidity (r), potential vorticity (pv), vertical velocity (w), wind-speed (speed; sqrt(u*u+v*v)) and wind vectors (wind3).

Choose from the following (note the cross-section macro hres_xs.mv uses slightly different names for the parameters).

Panel
  • "pt", "pv"              : potential temperature + potential vorticity  -  to characterize the cold core and warm core structures of Hurricane Nadine and the cut-off low.
  • "r", "w"                  : humidity + vertical motion  -  another view of the cold core and warm core structures of Hurricane Nadine and the cut-off low.
  • "pv", "w" ("r")      : potential vorticity + vertical velocity (+ relative humidity)  -  a classical cross-section to see if a PV anomaly is accompanied with vertical motion or not
    .


    Back to the tutorial



    Further reading

    ...