Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

The page will be updated as required. It was last changed on 1421.05.2018.

For a record of changes made to this page please refer to  Document versions.

Further information and advice regarding the upgrade can be obtained from User Support.

 

Table of Contents
maxLevel3
excludeDescription of upgrade

Timetable for implementation

The planned timetable for the implementation of the IFS Cycle 45r1 is as follows:

...

21.03.2018

...

Expected date of implementation

The timetable represents current expectations and may change in light of actual progress made.

Current Status

We have now entered the release candidate testing phase of IFS Cycle 45r1. HRES and ENS test data are available in dissemination.

Meteorological content of the new cycle

Assimilation

  • Weakly coupled sea-ice atmosphere assimilation applied with the use of OCEAN5 sea-ice (instead of OSTIA) in the surface analysis of the high-resolution (HRES 4d-Var) and the ensemble of data assimilations (EDA) analyses;
  • Relative humidity increments calculated using temperature instead of virtual temperature;
  • Weak constraint model error forcing applied at every time step instead of every hour to avoid shocks in the model integration.

Observations

  • Assimilation of non-surface-sensitive infra-red (IR) channels over land;
  • Assimilation of all sky micro-wave (MW) sounding channels over coasts;
  • Use of direct broadcast FY-3C MWHS2 data for better timeliness;
  • Introduction of RTTOV-12 and new microwave instrument coefficients;
  • Activation of constrained variational bias correction (VarBC);
  • Retuning of the radiosonde observation error, and introduction of a scheme to account for radiosonde drift;

  • Introduction of temperature bias correction of old-style AIREP observations; aircraft temperature varBC predictor upgraded to a three predictor model (cruise, ascent, descent); reduced thinning of aircraft data;

  • Assimilation of JASON-3 and Sentinel-3A altimeters, and use of new altimeters for wave data assimilation;

Model

...

Latest news!

21.05.2018

  • Please note that the bathymetry (water depth) has changed with the IFS Cycle 45r1 . See below for more information. Apologies for this late notification.
  • We have been informed about a change of value for the ecCodes key named timeRangeIndicator in the cycle 45r1 GRIB1 data at step 0 since the run of 18 April 2018 at 00Z. The cause of this change has been identified and is fixed for the 06Z BC run of 21 May 2018 onwards.
  • The CAMS (Copernicus Atmosphere Monitoring Service) real-time data assimilation and forecasting system will be upgraded to IFS cycle 45r1 on 26 June 2018. More information can be found in the Implementation of IFS cycle 45R1_CAMS.

 

...

Table of Contents
maxLevel3
excludeDescription of upgrade

...

Timetable for implementation

The planned timetable for the implementation of the IFS Cycle 45r1 is as follows:

DateEvent

21.03.2018

Initial Publication
April 2018Initial announcement, with test data in MARS
May 2018Availability of test data in dissemination
5 June 2018

Expected date of implementation

The timetable represents current expectations and may change in light of actual progress made.

Current Status

We have now entered the release candidate testing phase of IFS Cycle 45r1. HRES and ENS test data are available in dissemination.


Meteorological content of the new cycle

Assimilation

  • Weakly coupled sea-ice atmosphere assimilation applied with the use of OCEAN5 sea-ice (instead of OSTIA) in the surface analysis of the high-resolution (HRES 4d-Var) and the ensemble of data assimilations (EDA) analyses;
  • Relative humidity increments calculated using temperature instead of virtual temperature;
  • Weak constraint model error forcing applied at every time step instead of every hour to avoid shocks in the model integration.

Observations

  • Assimilation of non-surface-sensitive infra-red (IR) channels over land;
  • Assimilation of all sky micro-wave (MW) sounding channels over coasts;
  • Use of direct broadcast FY-3C MWHS2 data for better timeliness;
  • Introduction of RTTOV-12 and new microwave instrument coefficients;
  • Activation of constrained variational bias correction (VarBC);
  • Retuning of the radiosonde observation error, and introduction of a scheme to account for radiosonde drift;

  • Introduction of temperature bias correction of old-style AIREP observations; aircraft temperature varBC predictor upgraded to a three predictor model (cruise, ascent, descent); reduced thinning of aircraft data;

  • Assimilation of JASON-3 and Sentinel-3A altimeters, and use of new altimeters for wave data assimilation;

Model

  • Coupling of the 3-dimentional ocean and atmosphere: introduction of the coupling to the NEMO 3-dimentional ocean model also in the high-resolution forecast (HRES), with the same ocean model version used in the medium-range/monthly ensemble (ENS): NEMO3.4 in ORCA025_Z75 configuration; upgrade of the NEMO-IFS coupling strategy in both ENS and HRES to a full-coupling in the tropical region (partial-coupling-extra-tropics);
  • Improved numerics for warm-rain cloud microphysics and vertical extrapolation for semi-lagrangian trajectory;
  • Increased methane oxidation rate to improve (increase) water vapour in the stratosphere;
  • Improved representation of super-cooled liquid water in convection, and minor convection updates;
  • Improvements in the tangent forward and adjoint models linked to the convection scheme;
  • Correction of soil thermal conductivity formulation and addition of soil ice dependency;
  • New extended output parameters have been added. See below.
  • Modified parameter for non-orographic gravity-wave drag scheme for 91 levels;
  • Model error changes:
    • Stochastically perturbed parametrization tendency scheme (SPPT): improved flow-dependent error representation via reduced spread in clear skies regions (due to unperturbed radiative-tendency in clear sky), activation of tendency perturbations in stratosphere, and weaker tapering of perturbations in boundary layer; amplitude reduction of the SPPT perturbations patterns (by 20%);
    • EDA: cycling of stochastic physics random fields in the EDA, and adoption of the same SPPT configuration in EDA as in ENS;
    • Stochastic kinetic energy backscatter scheme (SKEB): deactivation of the stochastic backscatter (SKEB) scheme due to improved model error representation by the SPPT scheme (see above), leading to a 2.5% cost saving in the ENS;

Anchor
bathy
bathy
New bathymetry in wave models

With the IFS Cycle 45r1, we have upgraded the bathymetry (water depth) used in the wave models (HRES-WAM, HRES-SAW and ENS-WAM) based on ETOPO1.

The figures below show the new bathymetry used for HRES-WAM and ENS-WAM for Europe together with the difference with the previously used bathymetry (ETOPO2).

HRES-WAM

IFS cycle 45r1 bathymetry (ETOPO1)Difference between IFS cycle 43r3 and 45r1 bathymetries

Image Added

Image Added

ENS-WAM

IFS cycle 45r1 bathymetry (ETOPO1)Difference between IFS cycle 43r3 and 45r1 bathymetries

Image Added

Image Added


This change was in part driven by users pointing out that the previous bathymetry for the Baltic Seawas quite erroneous at few places. Change in water depth will mostly affect the wave fields in coastal area, generally resulting in higher wave heights where the water has become deeper and vice-versa.. Moreover, some WAM grid points have changed from sea to land (i.e. no waves at those points),  and vice versa. These locations are respectively shown in the right figures above , with green and black shadings (you may need to zoom into the pictures). This change of land/sea points will be visible for some coastal locations in the Wave ENSgrams and for users relying exclusively on the wave model values at those locations.

...

Meteorological impact of the new cycle

...

The GRIB model identifiers (generating process identification number) for cycle 45r1 will be changed as follows:

GRIB 1
Section 1
Octets
GRIB 2
Section 4
Octets
grib_api key ComponentModel ID
OldNew
6 14  generatingProcessIdentifierAtmospheric model148149
Ocean wave model113114
HRES stand-alone ocean wave model213214

New model output parameters

Extended output have been added in cycle 45r1, including precipitation rates, CAPE indices and a total lightning flash density.


paramIdShortnamenameDescriptionunitsGRIB editionComponentTest data availableDisseminationecChartsProposed for Catalogue
228050litotiInstantaneous total lightning flash densityInstantaneous value of total (cloud-to-cloud and cloud-to-ground) lightning flash densitykm-2 day-12

HRES / ENS

(tick)(tick)TBC(tick)
228051litota1Averaged total lightning flash density in the last hour
Averaged total (cloud-to-cloud and cloud-to-ground) lightning flash density in the last hourkm-2 day-12
HRES / ENS(tick)(tick)TBC(error)
228057litota3Averaged total lightning flash density in the last 3 hoursAveraged total (cloud-to-cloud and cloud-to-ground) lightning flash density in the last 3 hourskm-2 day-12
HRES / ENS(tick)(tick)TBC(tick)
228058litota6Averaged total lightning flash density in the last 6 hoursAveraged total (cloud-to-cloud and cloud-to-ground) lightning flash density in the last 6 hourskm-2 day-12
HRES / ENS(tick)(tick)TBC(tick)
260048tprateTotal precipitation rateTotal precipitation rate (instantaneous)kg m-2 s-12HRES / ENS(tick)(tick)TBC(tick)
228035mxcape6maximum CAPE in the last 6 hoursMaximum CAPE in the last 6 hoursJ kg-12
HRES / ENS(tick)(tick)TBC(tick)
228036mxcapes6maximum CAPES in the last 6 hoursMaximum CAPE-shear in the last 6 hoursm2 s-22

HRES / ENS

(tick)(tick)TBC(tick)
162071viwveVertical integral of eastward water vapour fluxVertical integral of eastward water vapour fluxkg m-1 s-11HRES / ENS(tick)(tick)TBC(tick)
162072viwvnVertical integral of northward water vapour fluxVertical integral of northward water vapour fluxkg m-1 s-11HRES / ENS(tick)(tick)TBC(tick)
151131ocuOcean current zonal componentOcean current zonal componentm s-11HRES / ENS(tick)(tick)TBC(tick)
151132ocvOcean current meridional componentOcean current meridional componentm s-11HRES / ENS(tick)(tick)TBC(tick)


Tip

For more details on the new lightning parameters, please read the Newsletter article "Promising results for lightning predictions".

...

Note

The derived products from the ENS (files named with dissemination stream indicator Y and U) are available in ECPDS. Cycle 45r1Tropical Cyclones data are missing in ECPDS and will be made available as soon as possible. 

The Cycle 45r1 new model output parameters listed above will be available through the dissemination after the implementation date. Users wanting to test these parameters will need to access them through MARS.

On the implementation date, we will freeze the access to the dissemination requirements interface for a few hours.

Web charts based on IFS cycle 45r1 test data

Web charts, including ENS meteograms, based on IFS cycle 45r1 test data ENS meteograms based on IFS cycle 45r1 test data are available as of 16 May 2018 and can be viewed by selecting the "IFS cycle 45r1'model run in the ENS meteograms interface. Access to remaining web charts will shortly become available.

...

Member State users of the  "Simple time-critical jobs" framework can test that their scripts will work with the IFS Cycle 45r1 test data by using the limited ECaccess 'events' set up for this purpose:

Event IDEvent nameDescription
1633e_ms090At this stage, the e-suite step 090 (HRES-BC) has been generated.
1634e_ms144At this stage, the e-suite step 144 (ENS-BC) has been generated.
1635e_ms240At this stage, the e-suite step 240 (HRES) has been generated.
1636e_ms360At this stage, the e-suite step 360 (ENS) has been generated.
1637e_mslawAt this stage, the e-suite step law (HRES-SAW) has been generated.
1638e_ms1104At this stage, the e-suite step 1104 (ENS-MOFC) has been generated.
1639msrefcAt this stage, the e-suite step refc (REFORECAST) has been updated.

For these events, MSJ_EXPVER environment variable is set to 0072 and can be used to specify the IFS Cycle 45r1 test data in any MARS retrievals.

...

Anchor
DocumentVersions
DocumentVersions
Document versions

DateReason for update
21.03.2018
  • Initial version
12.04.2018
  • Scorecards available
  • Impact on Tropical cyclones added
  • Test data available in MARS, with some reservation on the MXCAPE and lightning parameters
09.05.2018
  • Test data available in dissemination
  • New lightning and MXCAPE output parameters available
  • Re-forecasts available
  • Scorecards updated
14.05.2018
  • ENS derived products available in ECPDS,
with the
  • withthe exception of Tropical Cyclones
  • Data available in ecCharts
21.05.2018
  • Change of bathymetry in cycle 45r1
  • Bug in GRIB-1 encoding fixed
  • ENS meteograms available
  • CAMS real-time system upgrade