ecCharts

Introducing ECMWF's web charts applications

Cihan Sahin

Cihan.sahin@ecmwf.int

ECMWF graphical products

Charts on www

ecCharts

WWW Charts

 High resolution (HRES) forecast charts (Updated at 06:55 and 18:55) **C**ECMWF

- Ensemble prediction system (ENS) charts up to 10 days (Updated at 7:40 and 19:40)
- Ensemble prediction system (ENS) charts 10-15 days (Updated at 8:00 and 20:00)
- Position generated time series from Ensemble, so called ENS meteograms.
- Monthly forecast charts (Every Thursday and Monday)
- Seasonal forecast charts (once a month)
- Observation monitoring charts (Daily, monthly ...)
- Research charts (Model climate based on different IFS) cycles, Ocean reanalysis, special projects ...)

Quality of our foregot

Chart functionalities

2m temperature and 30m winds

Chart options

Clickable charts

Many medium-range charts are clickable.

Chart dashboard

Organise multiple charts and meteograms in the same "page".

Access to chart dashboard

https://software.ecmwf.int/wiki/display/FCST/Chart+dashboard

ecCharts

Web based application to inspect and visualize ECMWF medium-range and extended- range data (NEW!)

- Web based immediate access to charts
- Native data resolution
- Interactive features (zoom, pan, click, extract data information, ...)
- User controlled visualization
- Customisable parameters
- Download charts (through WMS)

URL eccharts.ecmwf.int/forecaster/

ecCharts user interfaces

Forecaster / Dashboard / WMS

https://apps.ecmwf.int/wms/?token=public&request=GetMap&layers=composition_aod550,grid,foreground&width=600&bbox=-180,-90,180,90

Data in ecCharts

- High resolution and Ensemble model output (atmospheric & wave parameters)
- Point extracted data (for a given latitude/longitude)
 - Time series from all available parameters
 - ENS meteograms for a selected parameter set
- Ensemble derived data
 - Probabilities, Percentiles, EFI/SOTs, Model-climate, Ensemble mean and spread ...

NEW!

Extended range data available: updated twice a week (Monday/Thursday at 22:00 UTC)

Data availability

- Data made available based on dissemination schedule.
- Once data is available, all chart are generated dynamically on demand.

Basic ecCharts concepts

- Basic components to build a plot : Style, Layer, Projection
- What you have on your screen is combination of those components and is called a Product

More on layers and products

- Layers are basic visual elements (meteorological parameters, result of complex computations, coastlines ...)
- Overlay-able
- Customisable (ie. Accumulation period for total precipitation, Event threshold and event operator for probability layers, Interval in which maximum wind gust computed ...)
- Can be re-ordered
- Final display is "Product". Can be saved for re-use.
- A small set of pre-defined Products are available. But idea is that user creates products as they wish.

User interfaces – Forecaster tool

- Interactive (zoom, pan ...)
- Plot area maximised (See weather room ...)
- Work and create a product and save as your own.
- Data fields are global.
- Charts are clickable to extract information
- Overlay any combination of parameters (currently around 230) from HRES and ENS.
- Design and save as your "own" product to reuse.
- Control projection and time (animations ...)

User interfaces - Dashboard

- Organise multiple charts and meteograms in the same "page".
 Basic elements are called widgets.
 - A chart widget is used to display a product either from ECMWF pre-defined set or your saved products.
 - ENS meteograms widgets (10 days, 15 days, EFI/CDF)
 - Control widget to apply collective actions for the charts on the same page ie. All charts in a tab animate simultaneously.
- User can create many tabs each containing many widgets.

More on Ensemble data

ecCharts provides an easy way to access and visualise ECMWF Ensemble data

Ensemble data = 50 perturbed forecasts (lower resolution) + Control forecast (No perturbation)

What is the probability of precipitation > 5 mm/ 6 hr

How about over 24 hr?

Show ENS temperatures for 90 th percentile?

How about ENS distribution for a given point?

What is the probability of precipitation > 5 mm/ 6 hr AND wind speed > 10 m/s? How about over 24 hr?

Customising charts is the key functionality to explore Ensemble data in detail.

Charts need to be generated dynamically from raw data.

ENS Probabilities

• To convey forecast uncertainty information by the probability of the occurrence of an event.

Similar customisation applies for percentiles and probability of combined events.

Meteograms

- Position based forecast plots displaying predefined ENS percentiles.
- Distributions are displayed using a box and whisker plot.
- Types of meteograms;
 - 10-day meteograms
 - 10-day meteograms for wave parameters
 - 15-day meteograms
 - 15-day meteograms with model climate
 - Plumes
 - ENS members (individual lines)
 - EFI and CDF diagrams
 - Extended range meteograms (Anomalies)
- All charts are clickable to show selected meteograms for a chosen location.

ENS Control (31 km)

High Resolution (16 km)

Meteograms – more parameters in ecCharts

- Classical meteograms (as in www and clickable charts) have a limited number of parameters (4 for 10-day meteogram)
- ecCharts displays meteogram parameters individually. That allows users to customize and present Meteograms as they wish to.
- (2t, total precipitation, wind gust, low/medium/high/ total cloud cover, snowfall, wind speed, mean wave period/direction, wave direction, significant wave height, Most probable precipitation type (NEW))

Other ensemble data

- Derived products
 - ENS combined and weighted probabilities
 - ENS mean and spread
 - EFIs
 - SOTs
 - Cyclone strike probabilities
 - Cyclone tracks
 - Model-climate
 - Spaghetti plots
 - Post processed products
 - Precipitation type
 - Point rainfall ...

June 2017 update

- Dedicated to Extended-range forecast parameters (Up to 6 weeks)
 - Weekly mean anomalies (2mT, surface temperature, precipitation and MSLP) with controllable significance levels.
 - Probability distributions for weekly mean anomalies (Same parameters)
 - Extended range meteograms: Weekly mean anomalies with climate distribution (Same parameters)
 - Updated twice a week: Monday/Thursday 22:00 UTC
- ENS
 - SST and sea ice cover from Control forecast
 - Speed improvements for Spaghetti plots

Full list available https://software.ecmwf.int/wiki/display/ECCHARTS/Upd ates

November 2017 update

- More Extended-range forecast parameters (Up to 6 weeks)
 - More weekly mean anomalies (Wind at various levels, 500 hPa, sunshine duration)
 - Weekly mean anomaly probabilities
 - Updated twice a week: Monday/Thursday 22:00 UTC

ENS

- Most probable precipitation type
- Freezing rain probability
- Extra SOTs (CAPE, CAPES, MAXSWH)

Meteograms

 Probability of precipitation type (%) in precipitation rate categories

https://software.ecmwf.int/wiki/display/ECCHARTS/Upd ates

Extended range meteograms

- Weekly mean anomalies from real-time forecast (box plot) with Climate distribution (background shading)
- Forecast: Percentiles of weekly mean anomalies of 51 ENS members
- Climate: 20-year re-forecast (20 * 11 members = 220 samples) of weekly mean anomalies (Colour shading for percentiles)
- Parameters: 2m T, surface temperature, precipitation, mean sea level pressure
- Box plot is positioned on valid-time (Actually valid for a past week)

Use case: Make your own products

- Design your product
- Save as your own product
- Display in your Dashboard

Use case: Explore data

- Display your product
- Probe data values
- Generate time series
- Display meteograms

Update procedure

- Product updates are done twice a year June and November.
- Requests are collected via meetings, requests coming to ECMWF documentation pages, e-mails, Training courses ...
- ecCharts will contain only parameters that are in <u>The Catalogue of ECMWF Real-Time Products</u>
- Full information available in ecCharts documentation pages.

You can follow the updates here;

https://software.ecmwf.int/wiki/display/ECCHARTS/Updates

Please contact us if you wish to see additional parameters in ecCharts.

Next update

- Vertical profiles in progress ...
 - ENS percentiles and HRES similar to Meteograms but a plot per step.
 - Temperature (T, Tdew-point, Tdepression)
 - Wind speed, wind direction
 - Indices (Cape, Cape shear, Totalx, kx,cin ...)
 - Any feedback welcome
- Point rainfall
 - Probabilities
 - Percentiles

(Fatima will demo ...)

To sum up ... ecCharts provides a complementary service

- Tries to help with non-trivial issues
 - Highly available service
 - Native resolution, global fields
 - Immediate availability
 - Utilizing Ensemble data
 - User oriented, large set of products
 - Complied with standards (OGC, WMS ...)

Cost?

Speed may be an issue

M-Climate: this stands for Model Climate. It is a function of lead time, date (+/-15days), and model version. It is derived by rerunning a 11 member ensemble over the last 20 years twice a week (1980 realisations). M-Climate is always from the same model version as the displayed ENS data.

Practicals

Please follow hands-on practicals

Do not forget! There is a demo of precipitation type probability and point-rainfall layers after this.

