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Abstract and key learning points

The aim of this session is to introduce the main sources of uncertainty that lead to forecast 
errors. The weather prediction problem will be discussed, and stated in terms of an 
appropriate probability density function (PDF). The concept of ensemble prediction based 
on a finite number of integration will be introduced, and the reason why it is the only 
feasible method to predict the PDF beyond the range of linear growth will be illustrated.

By the end of the session you should be able to:

 explain which are the main sources of forecast error

 illustrate why numerical prediction should be stated in probabilistic terms

 describe the rationale behind ensemble prediction
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Outline

1. The Numerical Weather Prediction (NWP) problem

2. Sources of forecast uncertainties and chaotic behaviour

3. Ensemble prediction as a practical tool for probabilistic prediction

4. The ECMWF medium-range/monthly ensemble
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1. Numerical Weather Prediction (NWP) models

The behavior of the atmosphere 
is governed by a set of physical 
laws that express how the air 
moves, the process of heating 
and cooling, the role of moisture, 
and so on.

Interactions between the 
atmosphere and the underlying 
land and ocean are important in 
determining the weather.
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1. Model grid & v-levs of the Tco639L91 ENS

TCO639
(ENS)

L91
(ENS)



ECMWF Predictability TC (May 2016) - Roberto Buizza: Sources of uncertainty 7

1. Observations coverage and accuracy

To make accurate forecasts it is important to know the current weather:

 ~ 155M obs (99% from satellites) are received daily;

 ~ 15M obs (96% from satellites) are used every 12 hours.
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• Observations are used to correct errors in the short forecast from the 
previous analysis time

• Every 12 hours ~ 15M observations are assimilated to correct the 100M 
variables that define the model’s virtual atmosphere

• The assimilation relies on the quality of the model

1. Obs are assimilated to estimate the initial state



ECMWF Predictability TC (May 2016) - Roberto Buizza: Sources of uncertainty 10

0

10

20

30

40

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

N
u
m

b
e
r 

o
f 
o
b
s
e
rv

a
ti
o
n
s
 

u
s
e
d
 p

e
r 

d
a
y
 (

m
ill

io
n
s
)

CONV+AMV TOTAL

1. Observations used at ECMWF



ECMWF Predictability TC (May 2016) - Roberto Buizza: Sources of uncertainty 11

1. Satellite data used at ECMWF
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Improved models and data-assimilation systems, larger number of satellite observations 
and increased computer power contributed to forecast improvements, and a reduction of 
the gap between NH and SH scores.  

NH: 2d/25y 
(2014-1989)

SH: 2d/16y 
(2014-1998)

1. Forecast improvements over NH and SH for Z500



ECMWF Predictability TC (May 2016) - Roberto Buizza: Sources of uncertainty 13

Outline

1. The Numerical Weather Prediction (NWP) problem

2. Sources of forecast uncertainties and chaotic behaviour

3. Ensemble prediction as a practical tool for probabilistic prediction

4. The ECMWF medium-range/monthly ensemble
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Over Europe, on average 6-day forecasts for Z500 have ACC of about 0.85, and forecasts 
have ACC of about 0.6 up to about 8.5-9 days. 

2. Forecast improvements over Europe for Z500

<ACC>=0.608.5d < T < 9.0d

<ACC>=0.85
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2. February 2015: drop in forecast skill

But on single cases we still see severe forecast busts. In February 2015, 6-day forecasts 
issued on the 2nd and the 8th had ACC of about 40%, much less than their average ACC 
value of 0.85. 

0.85

0.60
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2. February 2015: drop in forecast skill

Consider the t+144h 
forecasts issued on 8@00 
and valid for 14@00 
(middle): not only the HRES 
and the ENS-control, but 
also the whole ENS 
members showed a drop in 
skill. This can be detected 
also 2 days earlier (bottom) 
and later (top). 

This unpredictable situation 
was flagged by the ENS, 
which showed a very large 
spread. 

+144h

+96h

+192h
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2. February 2015: drop in forecast skill

08@00+6d
HRES+STD

08@00+6d
<ENS>+NSTD

14@00
HRES+STD

14@00
<ENS>+NSTD
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2. Why do forecasts fail?

Forecasts can fail because:

 The initial conditions are not accurate enough, e.g. due to poor coverage and/or 
observation errors, or errors in the assimilation (initial uncertainties).

 The model used to assimilate the data and to make the forecast describes only 
in an approximate way the true atmospheric phenomena (model uncertainties).

t=0

t=T1

t=T2
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2. The atmosphere chaotic behavior

Furthermore, the atmosphere is a chaotic system, with flow-dependent errors growth. 
This was illustrated for the first time by Edward Lorenz, with his 3-dimensional model. 
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Outline

1. The Numerical Weather Prediction (NWP) problem

2. Sources of forecast uncertainties and chaotic behaviour

3. Ensemble prediction as a practical tool for probabilistic prediction

4. The ECMWF medium-range/monthly ensemble
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3. What is the aim of weather forecasting? 

We have seen that single forecasts can fail due to a combination of initial and model 
uncertainties, and that the NWP problem is made extremely complex by the chaotic 
nature of the atmosphere. 

 Does it make sense to issue single forecasts?

 Can something better be done?

 More generally, what is the aim of weather forecasting?

 Should it be to predict only the most likely scenario, or should it aim to predict also its 
uncertainty (give a ‘confidence band’), for example expressed in terms of weather scenarii 
or probabilities that different weather conditions can occur?
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3. Ensemble prediction

fc0

fcj

reality

PDF(0)

PDF(t)

Temperature Temperature

Forecast time
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Single HRES fcs 
failed to positione
correctly the 
storm, and this led 
to snowfall 
overestimation for 
NY of in the 24-36-
48h forecasts.

MLSP+TP maps 
show a 150-200 km  
eastward shift in 
the storm centre.

3. US Storm, 27-28/01/2015: single HRES fc

27@00+12h 26@12+24h

26@00+36h 25@12+48h
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ENS-based probabilistic forecasts can be used to estimate the level of confidence 
(predictability) of single forecasts. They show that NY was closer to the edge of the area 
with high probability of more than 30mm of precipitation (between 27@00 and 28@06) 
than Boston, indicating higher uncertainty. 

3. US Storm, 27-28/01/2015: ENS PR fcs

27@00+12h 26@12+24h 26@00+36h 25@12+48h

25@00+60h 24@12+72h 24@00+84h 23@12+96h

ENS PR[TP(27@00–28@06)>30mm]
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These figures show a larger version of the probability maps issued on 26@00 (left; t+36h) 
and 25@00 (right; t+60h). 

3. US Storm, 27-28/01/2015: ENS PR fcs

ENS PR[TP(27@00–28@06)>30mm]

26@00+36h 25@00+60h
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ENS-based probabilistic forecasts expressed in terms of CDF shows that the fcs for NY were 
more uncertain (the slope of the CDF curves is steeper) than the fcs for Boston.

3. US Storm, 27-28/01/2015: ENS PR fcs

Obs (NEXRAD) 5-10 mm Obs (NEXRAD) 30-35 mm

00-24h
12-36h

24-48h

00-24h

12-36h

24-48h

New York Boston
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3. A necessary ensemble property: reliability

M1

<Mj>

M2
O

A reliable ensemble has, on 
average over many cases M, 
spread measured by the 
ensemble standard deviation 
σ, equal to the average error 
of the ensemble mean eEM: 
<σ>M=<eEM>M

σ

eEM
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3. In a reliable ensemble, small spread>small error

σ

eEM

σ

eEM

Case 1 Case 2

In a reliable ensemble, small 
ensemble standard deviation 
indicates a more predictable 
case, i.e. a small error of the 
ensemble mean eEM.
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3. Track dispersion & predictability: Sandy (Oct 2012)

Sandy (Oct 2012) - Dispersion of 
ENS tracks in the 10d forecast 
issued on 2012.10.23@00 was 
relatively large after forecast day 
5, indicating high uncertainty on 
direction and landfall location. 
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3. Track dispersion & predictability: Gonzalo (Oct 2014)

Gonzalo (Oct 2014) - Dispersion of 
ENS tracks in the 10d forecast 
issued on 2014.10.13@12 was 
relatively small for the whole 10 
day range, indicating more 
confidence on direction of travel. 
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3. Track dispersion & predictability: Haiyan (Nov 2013)

Haiyan (Nov 2013) - Dispersion of 
ENS tracks in the 10d forecast 
issued on 2014.10.13@12 was 
very small for the whole 10 day 
range, indicating high confidence 
on direction of travel. 
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3. ENS spread as an index of predictability

Small ensemble spread 
should identify 
predictable conditions:

 On average, the 
spread in 1998 (top left) 
is smaller than in 1997 
(bottom left), and the 
control error is also 
smaller (right)

 For both cases, areas 
of smaller spread 
indicates areas of small 
error
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3. In a reliable ensemble, <spread>~<er(EM)>

One way to check 
the ensemble 
reliability is to 
assess whether 
the time evolution 
of the seasonal 
average  ensemble 
standard deviation 
and error of the 
ensemble mean 
are similar.
This plot shows 
these two curves 
for Z500 over NH 
in DN14J15.

Z500 - NH
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3. In a reliable ensemble, <fc-prob>~<obs-prob>

One way to check the ensemble reliability 
is to assess whether the average forecast 
and observed probabilities of a certain 
event are similar. 

These plots compare the two 
probabilities at t+144h and t+240h for 
the event ‘24h precipitation in excess of 
1/5/10/20 mm’ over Europe for ND14J15 
(verified against observations).

T+144h

T+240h
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3. In a reliable ensemble, <fc-prob>~<obs-prob>

One way to check the ensemble reliability 
is to assess whether the average forecast 
and observed probabilities of a certain 
event are similar. 

These plots compare the two 
probabilities at t+144h and t+240h for 
the event ‘2-meter temperature anomaly 
lower than -8/-4 and higher than +4/+8 
degrees’ over Europe for ND14J15 
(verified against observations).

T+144h

T+240h
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3. Are ensembles more valuable than single fcs?

ENS probabilistic forecasts have higher Potential Economic Value (PEV) than the single 
high-resolution forecast. These plots refer to t+144h precipitation forecasts (ND14J15).

C/L=0.1C/L=0.1

T+144h – 1 mm/d T+144h – 20 mm/d
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3. Are ensembles more valuable than single fcs?

ENS probabilistic forecasts have higher Potential Economic Value (PEV) than the single 
high-resolution forecast. These plots refer to t+144h 2m temp. forecasts (ND14J15).

C/L=0.1C/L=0.1
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3. Ensembles are more consistent

Ensemble-mean 
forecasts issued 24-
hour apart and valid 
for the same time are 
more consistent than 
corresponding single 
forecasts. 

Ensemble-averaging 
filters dynamically the 
unpredictable scales 
(Zsoter et al 2009).

ECMWF ENS-con

UKMO ENS-con

ECMWF ensemble-mean

UKMO ensemble-mean
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Outline

1. The Numerical Weather Prediction (NWP) problem

2. Sources of forecast uncertainties and chaotic behaviour

3. Ensemble prediction as a practical tool for probabilistic prediction

4. The ECMWF medium-range/monthly ensemble
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4. Sensitivity to initial and model uncertainty

What is the relative 
contribution of initial and 
model uncertainties to 
forecast error?

Harrison et al (1999) have 
shown that initial 
differences explains most of 
the differences between 
ECMWF-from-ECMWF-ICs 
and UKMO-from-UKMO-ICs 
forecasts. 
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4. How should initial uncertainties be defined?

The initial perturbations’ 
components pointing along 
the directions of maximum 
growth amplify most.

If we knew the directions of 
maximum growth we could 
estimate the potential 
maximum forecast error.

t=0

t=T1

t=T2
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4. Definition of the initial perturbations

To formalize the computation of the 
directions of maximum growth a metric 
(inner product) should be defined to 
‘measure’ growth.

The metric used at ECMWF in the 
ensemble system is total energy.
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4. Asymptotic and finite-time instabilities

Farrell (1982) studying perturbations’ growth in baroclinic flows noticed that the long-time 
asymptotic behavior is dominated by normal modes, but that there are other 
perturbations that amplify more than the most unstable normal mode over a finite time 
interval. 

Farrell (1989) showed that perturbations with the fastest growth over a finite time interval 
could be identified solving an eigenvalue problem defined by the product of the tangent 
forward and adjoint model propagators. This result supported earlier conclusions by Lorenz
(1965).

Calculations of perturbations growing over finite-time interval intervals have been 
performed, for example, by Borges & Hartmann (1992) using a barotropic model, Molteni 
& Palmer (1993) with a quasi-geostrophic 3-level model, and by Buizza et al (1993) with a 
primitive equation model.
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4. Singular vectors

The problem of the computation of the directions of maximum growth of a time evolving 
trajectory is solved by an eigenvalue problem:

where:

 E0 and E are the initial and final time metrics

 L(t,0) is the linear propagator, and L* its adjoint

 The trajectory is time-evolving trajectory

 t is the optimization time interval

 221
0

*21
0  ELELE
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1. The operational ensemble in 2016

ENS includes 51 forecasts with resolution:

• Tco639L91 (~16km, 91 levels) from day   0 to 15

• Tco319L91 (~32km, 91 levels) from day 15 to 32 (only at 
00UTC on Mon and Thu).

Initial uncertainties are simulated by adding to the 
unperturbed analyses a combination of T42L91 singular 
vectors, computed to optimize total energy growth over a 
48h time interval (OTI), and perturbations generated by 
the ECMWF Ensembles of Data Assimilation (EDA) system.

Model uncertainties are simulated by adding stochastic 
perturbations to the tendencies due to parameterized 
physical processes (SPPT and SKEB schemes).

The unperturbed analysis is given by the Tco1279L137 
4DVAR. The EDA resolution is Tco639L137.

ENS runs daily at 00 and 12 UTC, with a TOA at 0.01 hPa.

NH SH TR

Definition of the 

perturbed ICs

1 2 50 51
…..

Products
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4. Major changes of ENS configuration (updated May 2016)

HRES VRES OTI Area past future sampl HRES VRES Tend # Mod Unc Coupling refc suite

Dec 1992 Oper Impl T21 L19 36h globe NO SVINI simm T63 L19 10d 33 NO NO NO

Feb 1993 SV LPO " " " NHx " " " " " " " " " "

Aug 1994 SV OTI " " 48h " " " " " " " " " " "

Mar 1995 SV hor resol T42 " " " " " " " " " " " " "

Mar 1996 NH+SH SV " " " (NH+SH)x " " " " " " " " " "

Dec 1996 resol/mem " L31 " " " " " TL159 L31 " 51 " " "

Mar 1998 EVO SV " " " " SVEVO " " " " " " " " "

Oct 1998 Stoch sch SPPT " " " " " " " " " " " STP " "

Oct 1999 vert resol " L40 " " " " " " L40 " " " " "

Nov 2000 FC hor resol " " " " " " " TL255 " " " " " "

Jan 2002 TC SVs " " " (NH+SH)x+TC " " " " " " " " " "

Sep 2004 sampling " " " " " " Gauss " " " " " " "

Jun 2005 rev sampl " " " " " " " " " " " " " "

Feb 2006 resolution " L62 " " " " " TL399 L62 " " " " "

Sep 2006 VAREPS " " " " " " "

TL399(0-10) / 

TL255(10-15) " 15d " " " "

Mar 2008 VAREPS-mon " " " " " " " " " 15d/32d " "

HOPE 

from d10 1*5*18y

Sep 2009 Rev SPPT " " " " " " " " " " " " " "

Jan 2010 hor resol " " " " " " "

TL639(0-10) / 

TL319(10-15) " " " revSTP " "

Jun 2010 EDA EPS " " " " 10*EDA " " " " " " " " "

Nov 2010 Rev Stoch scheme " " " " " " " " " 15d/32d " revSTP+BS " "

Nov 2011 New ocean model " " " " " " " " " " " "

NEMO 

from d10 "

Jun 2012

Rev EDA-pert & refc 

suite " " " " " " " " " " " " " 1*5*20y

Nov 2013

vert resol & coupling 

from d0 " L91 " " 25*EDA " "

TL639(0-10) / 

TL319(10-15) L91 15d/32d " "

NEMO 

from d0 "

May 2015

Extension to 46d and 

REFC suite to 22m " " " " 25*EDA " "

TL639(0-10) / 

TL319(10-15) " 15d/46d " " " 2*11*20y

Mar 2016 hor resol T42 L91 48h (NH+SH)x+TC 25*EDA SVINI Gauss

Tco639(0-15) / 

Tco319(15-45) L91 15d/46d 51 revSTP+BS

NEMO 

from d0 2*11*20y

Singular Vectors's characteristics
Description

Forecast characteristics
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Conclusion

 A complete solution of the weather prediction problem can be stated in terms of an 
appropriate probability density function (PDF). Ensemble prediction is the only feasible 
method to predict the PDF using dynamical forecasts beyond the range of linear growth.

 Initial and model uncertainties are the main sources of error growth. Initial 
uncertainties dominate in the short range. Predictability is flow dependent. 

 The initial error components along the directions of maximum growth contribute most 
to forecast error growth. These directions can be identified by the leading singular 
vectors, computed solving an eigenvalue problem.

 ENS has changed many times since 1992. Now it includes 51 15-day forecasts twice a 
day (00-12UTC), which are extended to 32 days twice a week (00UTC Mon/Thu). Each 
ENS ensemble member uses a coupled ocean-atmosphere forecasts with a TL639v319 
variable resolution in the atmosphere and 91 vertical levels, and a 1-degree resolution 
and 42 vertical levels in the ocean. 
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