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Q Abstract and key learning points

The aim of this session is to introduce the main sources of uncertainty that lead to forecast
errors. The weather prediction problem will be discussed, and stated in terms of an

appropriate probability density function (PDF). The concept of ensemble prediction based
on a finite number of integration will be introduced, and the reason why it is the only
feasible method to predict the PDF beyond the range of linear growth will be illustrated.

By the end of the session you should be able to:
= explain which are the main sources of forecast error

= jllustrate why numerical prediction should be stated in probabilistic terms
= describe the rationale behind ensemble prediction
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Q Outline

The Numerical Weather Prediction (NWP) problem
Sources of forecast uncertainties and chaotic behaviour

Ensemble prediction as a practical tool for probabilistic prediction

W e

The ECMWF medium-range/monthly ensemble
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Q 1. Numerical Weather Prediction (NWP) models

ECMWF MODEL / ASSIMILATION SYSTEM

The behavior of the atmosphere
is governed by a set of physical
laws that express how the air
moves, the process of heating
and cooling, the role of moisture,
and so on.

Interactions between the
atmosphere and the underlying
land and ocean are important in
determining the weather.
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Q 1. Numerical Weather Prediction (NWP) models

Momentum d—VZ—Z-QXV—£§p+g+§V

conservation dt Jo
: dT R-T-w
nergy _ n PT
conservation
Water vapour dq _p
conservation e
dt
Mass d os — d do These term;
conservation — ps A V-V+ represent the
ot do dt effect of clouds,
drostatic mountains,
Flydrosta d(D R T radiation,
balance - vegetation,
dG O waves, ...
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\ 1. Model grid & v-levs of the Tco639L91 ENS
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r&i 1. Observations coverage and accuracy

To make accurate forecasts it is important to know the current weather:

» ~ 155M obs (99% from satellites) are received daily;
» ~ 15M obs (96% from satellites) are used every 12 hours.

ECMWF Data Coverage (All cbs DA) - AMSU-A ECMWF Data Coverage (All obs DA) - AMV IR
25/Feb/2015; 00 UTC 25/Feb/2015; 00 UTC
Total number of obs = 544349 Total number of obs = 330439

. 55271 Noaats  » 122319 Nosald 110541 Noaatg  » 70044 ACUA * 107160 METOP-A « 76014 METOP-B
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& 1. Observations coverage and accuracy

To make accurate forecasts it is important to know the current weather:

» ~ 155M obs (99% from satellites) are received daily;
» ~ 15M obs (96% from satellites) are used every 12 hours.

ECMWEF Data Coverage (All obs DA) - Synop-Ship-Metar ECMWF Data Coverage (All obs DA) - GPSRO
25/Feb/2015; 00 UTC 25/Feb/2015; 00 UTC
Total number of obs = 63831 Total number of obs = 72283
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Q 1. Obs are assimilated to estimate the initial state

Time

Observations Observations Observations

| ! !

Analysis mp Analysis IM’ Analysis Iﬂp

Medium-range forecast

e (Observations are used to correct errors in the short forecast from the

previous analysis time
e Every 12 hours ~ 15M observations are assimilated to correct the 100M

variables that define the model’s virtual atmosphere
e The assimilation relies on the quality of the model
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r&i 1. Observations used at ECMWF
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1. Satellite data used at ECMWF
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r&‘ 1. Forecast improvements over NH and SH for Z500

Improved models and data-assimilation systems, larger number of satellite observations
and increased computer power contributed to forecast improvements, and a reduction of

the gap between NH and SH scores.
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Q Outline

The Numerical Weather Prediction (NWP) problem
Sources of forecast uncertainties and chaotic behaviour

Ensemble prediction as a practical tool for probabilistic prediction
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The ECMWF medium-range/monthly ensemble
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\{ 2. Forecast improvements over Europe for Z500

Over Europe, on average 6-day forecasts for Z500 have ACC of about 0.85, and forecasts
have ACC of about 0.6 up to about 8.5-9 days.

12mMA reaches 90@:
12mMA reaches 853
12mMA reaches 507
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12mMA reaches 7076
12mMA reaches 65%
12mMA reaches 605
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\Q 2. February 2015: drop in forecast skill

But on single cases we still see severe forecast busts. In February 2015, 6-day forecasts
issued on the 2" and the 8" had ACC of about 40%, much less than their average ACC
value of 0.85.
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\Q 2. February 2015: drop in forecast skill

Consider the t+144h S —— AR

forecasts issued on 8@00 — o eedemme
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»‘&‘ 2. February 2015: drop in forecast skill
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\( 2. Why do forecasts fail?

Forecasts can fail because:

= The initial conditions are not accurate enough, e.g. due to poor coverage and/or
observation errors, or errors in the assimilation (initial uncertainties).

= The model used to assimilate the data and to make the forecast describes only
in an approximate way the true atmospheric phenomena (model uncertainties).

ECMWEF Data Coverage (All obs DA) - Synop-Ship-Metar
26/Feb/2015; 00 UTC
Total number of obs = 64161

t=T1 /

T S
EFyr
'

T O A G R
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Q 2. The atmosphere chaotic behavior

Furthermore, the atmosphere is a chaotic system, with flow-dependent errors growth.
This was illustrated for the first time by Edward Lorenz, with his 3-dimensional model.
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Sources of forecast uncertainties and chaotic behaviour

Ensemble prediction as a practical tool for probabilistic prediction
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The ECMWF medium-range/monthly ensemble
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Q 3. What is the aim of weather forecasting?

We have seen that single forecasts can fail due to a combination of initial and model
uncertainties, and that the NWP problem is made extremely complex by the chaotic
nature of the atmosphere.

" Does it make sense to issue single forecasts?
= Can something better be done?
= More generally, what is the aim of weather forecasting?

= Should it be to predict only the most likely scenario, or should it aim to predict also its
uncertainty (give a ‘confidence band’), for example expressed in terms of weather scenarii
or probabilities that different weather conditions can occur?
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\( 3. Ensemble prediction

Temperature Temperature
fc;
fc,
PDF(t)
realit

PDF(0)

Forecast time
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& 3. US Storm, 27

Single HRES fcs
failed to positione
correctly the
storm, and this led
to snowfall
overestimation for
NY of in the 24-36-
48h forecasts.

MLSP+TP maps
show a 150-200 km
eastward shift in
the storm centre.
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-28/01/2015: single HRES fc
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A 3.US Storm, 27-28/01/2015: ENS PR fcs

ENS-based probabilistic forecasts can be used to estimate the level of confidence
(predictability) of single forecasts. They show that NY was closer to the edge of the area
with high probability of more than 30mm of precipitation (between 27@00 and 28@06)

than Boston, indicating higher uncertainty.

ENS PR[TP(27@00-28@06)>30mm] | — N
@00+12h. .« = 6@12424h . 6@00+36h - 5@12#48h ..
=z | : . ; =y : .

" e FL LY

W 80w ¥ & 0w c:’ 80w .o
5@00+60h, o5 |  124@12372h - < 7| 24@00#84h S = \3@12+96h
=y : =" : =1 e . == 1.

é " -
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f&& 3. US Storm, 27-28/01/2015: ENS PR fcs

These figures show a larger version of the probability maps issued on 26 @00 (left; t+36h)
and 25@00 (right; t+60h).

ENS PR[TP(27 @00-28@06)>30mm]

0.0 oiE Lk 0.4 0.E LiL:] o7 X! a8 1 .o oiE Lk 04 0.6 Lt

26@00+36h S 25@00+60k
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A\ 3.US Storm, 27-28/01/2015: ENS PR fcs

ENS-based probabilistic forecasts expressed in terms of CDF shows that the fcs for NY were
more uncertain (the slope of the CDF curves is steeper) than the fcs for Boston.

Cumulative Distribution Functions for total precipitation at 40.7°/-74° \/T: 27/01/2015 00UTC - 28/01/2015 00UTC Cumulative Distribution Functions for total precipitation at 42.2°/-71.1° \/T: 27/01/2015 00UTC - 28/01/2015 00UTC
—_— 4450 ENS 1+00-24 e —— 168 4 ENg- ——= EM 58 ENS t+00-24
100 S ENS 1537738 NECEEs ENS {2

100

80+

604/ 60~

40 404

Probability not to exceed threshold
Probability not to exceed threshold

20+

20
0 30 60 0% 10 % 30 40 50 €0
total precipitation (in mm) total preci (in mm)
Obs (NEXRAD) 5-10 mm Obs (NEXRAD) 30-35 mm
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& 3. A necessary ensemble property: reliability

O O

A reliable ensemble has, on
average over many cases M,
spread measured by the
ensemble standard deviation
o, equal to the average error
of the ensemble mean e,,:
<0>\=<€r>M
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»‘& 3. In a reliable ensemble, small spread>small error

Case 1 z

=

In a reliable ensemble, small
ensemble standard deviation
indicates a more predictable
case, i.e. a small error of the
ensemble mean eg,,.
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r&‘ 3. Track dispersion & predictability: Sandy (Oct 2012)
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& 3. Track dispersion & predictability: Gonzalo (Oct 2014)

Gonzalo (Oct 2014) - Dispersion of Pttty ms CHIEALLD ol pmo it 1280 i v o e e et M i1
ENS tracks in the 10d forecast

issued on 2014.10.13@12 was

relatively small for the whole 10
day range, indicating more
confidence on direction of travel.
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y:& 3. Track dispersion & predictability: Haiyan (Nov 2013)

Date 20121104 00 UTS & ECMWEF

Haiyan (NOV 2013) - Dispersion of Probability that HAIYAN will paszs within 120 km radius during the next 240 hours
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r&s 3. ENS spread as an index of predictability

ANA+ERRCON - Z500 1997-01-23 12h fc

72 558 /S
l () AN

Small ensemble spread
should identify
predictable conditions:

= On average, the
spread in 1998 (top left)
is smaller than in 1997
(bottom left), and the
control error is also

smaller (right)

= For both cases, areas
of smaller spread
indicates areas of small
error
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\( 3. In a reliable ensemble, <spread>~<er(EM)>

ENS Mean RMSE and ENS Spread
One Way t0 Check  Riem Exnaropis s sowamson 1o 1o 2500 - NH
the ensemble Do
reliability is to
assess whether
the time evolution
of the seasonal
average ensemble
standard deviation
and error of the
ensemble mean

EM rmze DecanFebali 6

are Similar. 1 2 3 4 =] & T FGWSSIDI!‘I a 10 11 12 13 14 15
This plot shows
these two curves P et

for Z500 over NH
in DN14J15.
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\

One way to check the ensemble reliability
is to assess whether the average forecast
and observed probabilities of a certain
event are similar.

These plots compare the two
probabilities at t+144h and t+240h for
the event ‘24h precipitation in excess of
1/5/10/20 mm’ over Europe for ND14J15
(verified against observations).

( 3. In a reliable ensemble, <fc-prob>~<obs-prob>
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One way to check the ensemble reliability
is to assess whether the average forecast
and observed probabilities of a certain
event are similar.

These plots compare the two
probabilities at t+144h and t+240h for
the event ‘2-meter temperature anomaly
lower than -8/-4 and higher than +4/+8
degrees’ over Europe for ND14J15
(verified against observations).

, ( 3. In a reliable ensemble, <fc-prob>~<obs-prob>
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\( 3. Are ensembles more valuable than single fcs?

ENS probabilistic forecasts have higher Potential Economic Value (PEV) than the single
high-resolution forecast. These plots refer to t+144h precipitation forecasts (ND14J15).
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\( 3. Are ensembles more valuable than single fcs?

ENS probabilistic forecasts have higher Potential Economic Value (PEV) than the single
high-resolution forecast. These plots refer to t+144h 2m temp. forecasts (ND14J15).
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\Q 3. Ensembles are more consistent

Ensemble-mean
forecasts issued 24-
hour apart and valid
for the same time are
more consistent than
corresponding single
forecasts.

Ensemble-averaging
filters dynamically the
unpredictable scales
(Zsoter et al 2009).

1.6
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/
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Q Outline

The Numerical Weather Prediction (NWP) problem
Sources of forecast uncertainties and chaotic behaviour

Ensemble prediction as a practical tool for probabilistic prediction

W e

The ECMWF medium-range/monthly ensemble

cECMWF ECMWF Predictability TC (May 2016) - Roberto Buizza: Sources of uncertainty

39



& 4. Sensitivity to initial and model uncertainty

UK(UK)-EC(EC) Z500 1996-12-17 12h t+120 EC(UK)-EC(EC) Z500 1996-12-17 12h t+120

What is the relative
contribution of initial and
model uncertainties to
forecast error?

Harrison et al (1999) have
shown that initial
differences explains most of
the differences between
ECMWF-from-ECMWEF-ICs
and UKMO-from-UKMO-ICs
forecasts.

EC(EC)-ANA Z500 1996-12-17 12h t+120

\ SN
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\Q 4. How should initial uncertainties be defined?

The initial perturbations’ %

components pointing along
the directions of maximum
growth amplify most.

If we knew the directions of t=T1
maximum growth we could
estimate the potential
maximum forecast error.
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Q 4. Definition of the initial perturbations

To formalize the computation of the
directions of maximum growth a metric
(inner product) should be defined to
‘measure’ growth.

The metric used at ECMWEF in the
ensemble system is total energy.

time T

p
N

N

C,
<X Eppy>== j [ (VA7 VA, +VATD, -VA'D, +—* =

r

+j(Rd r|n7z Inz,)ds
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A( 4. Asymptotic and finite-time instabilities

Farrell (1982) studying perturbations’ growth in baroclinic flows noticed that the long-time
asymptotic behavior is dominated by normal modes, but that there are other

perturbations that amplify more than the most unstable normal mode over a finite time
interval.

Farrell (1989) showed that perturbations with the fastest growth over a finite time interval
could be identified solving an eigenvalue problem defined by the product of the tangent

forward and adjoint model propagators. This result supported earlier conclusions by Lorenz
(1965).

Calculations of perturbations growing over finite-time interval intervals have been
performed, for example, by Borges & Hartmann (1992) using a barotropic model, Molteni
& Palmer (1993) with a quasi-geostrophic 3-level model, and by Buizza et al (1993) with a
primitive equation model.
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A( 4. Singular vectors

The problem of the computation of the directions of maximum growth of a time evolving

trajectory is solved by an eigenvalue problem:

E;Y2LUELE;Y?v = 6%

where:
» E,and E are the initial and final time metrics
» L(t,0)is the linear propagator, and L* its adjoint
» The trajectory is time-evolving trajectory
» tis the optimization time interval
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\Q 1. The operational ensemble in 2016

ENS includes 51 forecasts with resolution:

e T,639L91 (~16km, 91 levels) from day 0to 15 . @ . @ .

e T.,319L91 (~32km, 91 levels) from day 15 to 32 (only at \/

OOUTC on Mon and Thu).
. N : : Definition of the
Initial uncertainties are simulated by adding to the perturbed ICs l
unperturbed analyses a combination of T42L91 singular
vectors, computed to optimize total energy growth overa [ 2 50 |51

48h time interval (OTl), and perturbations generated by
the ECMWF Ensembles of Data Assimilation (EDA) system.
\roducts

Model uncertainties are simulated by adding stochastic
perturbations to the tendencies due to parameterized
physical processes (SPPT and SKEB schemes).

The unperturbed analysis is given by the T_ 12791137
4DVAR. The EDA resolution is T, ,639L137.

ENS runs daily at 00 and 12 UTC, with a TOA at 0.01 hPa.
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ﬁ 4. Major changes of ENS configuration (updated May 2016)

Description Singular Vectors's characteristics Forecast characteristics
HRES | VRES | OTI Area past |future|sampl HRES VRES| Tend | # | Mod Unc [Coupling]refc suite
Dec 1992 Oper Impl T21 | L19 [36h globe NO | SVINI| simm T63 L19 10d |33 NO NO NO
Feb 1993 SV LPO " " " NHx 3 " " " " 3 ! " ! 3
Aug 1994 SV OTI " " 148h " " " " " " " " " " "
Mar 1995 SV hor resol T42 ! "
Mar 1996 NH+SH SV " " (NH+SH)x "
Dec 1996 resol/mem " L31 | " " " " " TL159 L31 " 51 " " "
Mar 1998 EVO SV " SVEVO " " :
Oct 1998 Stoch sch SPPT " " " " " " " " " " " STP " "
Oct 1999 vert resol " L40 | " " " " " " L40 " " " : "
Nov 2000 FC hor resol " " " TL255 "
Jan 2002 TC SVs " " " | (NH+SH)x+TC " " " " : " " " " "
Sep 2004 sampling " Gauss
Jun 2005 revsampl " " " " " " " " 3 " " " " "
Feb 2006 resolution L62 | " . TL399 L62
TL399(0-10) /
Sep 2006 VAREPS " " " " " " " TL255(10-15) " 15d " " " "
HOPE
Mar 2008 VAREPS-mon " " " 15d/32d from d10| 1*5*18y
Sep 2009 Rev SPPT " " " " " " " " ) " " " " "
TL639(0-10) /
Jan 2010 hor resol " " " " " " " TL319(10-15) " " " revSTP " "
Jun 2010 EDA EPS " 10*EDA| " . " "
Nov 2010] Rev Stoch scheme " - " - 15d/32d revSTP+BS
NEMO
Nov 2011 | New ocean model . from d10
Rev EDA-pert & refc
Jun 2012 suite " . " . . 1*5*20y
vert resol & coupling TL639(0-10) / NEMO
Nov 2013 from dO " Lo1 | " " 25*EDA] " " TL319(10-15) | L91 |15d/32d| " " from dO "
Extension to 46d and TL639(0-10)/
May 2015| REFCsuite to 22m " . " " 25*EDA] " " TL319(10-15) " |15d/46d| " " . 2*11*20y
Tco639(0-15) / NEMO
Mar 2016 hor resol T42 | L91 |48h|(NH+SH)x+TC |25*EDA| SVINI |Gauss| |Tco319(15-45)| L91 |15d/46d |51 [revSTP+BS| from dO | 2*11*20y

CCECMWF
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Q Conclusion

** A complete solution of the weather prediction problem can be stated in terms of an
appropriate probability density function (PDF). Ensemble prediction is the only feasible
method to predict the PDF using dynamical forecasts beyond the range of linear growth.

¢ Initial and model uncertainties are the main sources of error growth. Initial
uncertainties dominate in the short range. Predictability is flow dependent.

** The initial error components along the directions of maximum growth contribute most
to forecast error growth. These directions can be identified by the leading singular
vectors, computed solving an eigenvalue problem.

** ENS has changed many times since 1992. Now it includes 51 15-day forecasts twice a
day (00-12UTC), which are extended to 32 days twice a week (OOUTC Mon/Thu). Each
ENS ensemble member uses a coupled ocean-atmosphere forecasts with a T 639v319
variable resolution in the atmosphere and 91 vertical levels, and a 1-degree resolution
and 42 vertical levels in the ocean.
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