Ensemble Forecasts Initial Perturbation 1

Chaos and weather prediction

The atmosphere is a chaotic system

- Small errors can grow to have major impact (butterfly effect)
- We can never perfectly measure the current state of the whole atmosphere

Ensemble Forecasts

- Parallel set of forecasts from very slightly different initial conditions and model formulation
- Assess uncertainty of today's forecast

The ECMWF Ensemble:

- 51 Members (50 perturbed + control member without perturbations), TCo639 (~ 16 km) to day 15
- 91 vertical levels
- Coupled to NEMO ocean model (1/4 degree) and LIM2 ice model
- Initial perturbation via an ensemble of data assimilations and singular vectors, 5 member ocean data assimilation
- Model error representation (SPPT, SKEB)

3. Ensemble prediction systems

Sources of Uncertainty:

- Initial Conditions
- Model Formulation

from R. Buizza

Reliability of the ensemble spread

• Consider ensemble variance ("spread") for an M-member ensemble

$$\frac{1}{M}\sum_{j=1}^{M}(x_j-\overline{x})^2$$

and the squared error of the ensemble mean

$$(\overline{x}-y)^2$$

- Average the two quantities for many locations and/or start times.
- The averaged quantities have to match for a reliable ensemble (within sampling uncertainty).

From Martin Leutbecher's lecture "Ensemble Verification 1" (tomorrow)

How to construct initial perturbations:

Methods that rely on the dynamics only, e.g.:

- bred vectors
- singular vectors

Ensemble data assimilation methods, e.g.:

- Ensemble of 4D-Var data assimilations (EDA)
- Ensemble Kalman Filter

ECMWF: combination of EDA and singular vectors

Starting the Medium-Range Forecast – the 'Analysis'

Analysis: 3 dimensional virtual image of the atmosphere at a given time.

 The short range forecast from the previous analysis is our 'first estimate' of the current state of the atmosphere.

4D-Var assimilation

To find model trajectory that best fits the observations over an assimilation interval
 (t=0,1,...,T) - > finding the minimum of the 4DVar cost function:

$$J(\mathbf{x}_0) = (\mathbf{x}_b - \mathbf{x}_o)^T (\mathbf{P}^b)^{-1} (\mathbf{x}_b - \mathbf{x}_o) + \sum_{t=0}^T (\mathbf{y}_t - H_t M_{0 \to t} (\mathbf{x}_0))^T \mathbf{R}_t^{-1} (\mathbf{y}_t - H_t M_{0 \to t} (\mathbf{x}_0))$$

See also Massimo Bonavita's Talk in DA Training

ECMWF

4D-Var assimilation

The Ensemble of Data Assimilations

- 25 perturbed ensemble members + 1 control, TCo639 outer loops, 137 levels, TL191/TL191 inner loops. (HRES DA: TCo1279 outer loops, TL255/TL319/TL399 inner loops).
- Observations randomly perturbed according to their estimated error covariances (R)
- SST perturbed with climatological error structures
- Model error representation via Stochastically Perturbed Parametrization Tendencies (SPPT, see Sarah-Jane's Talk)

The EDA simulates the error evolution of the 4DVar analysis cycle:

- → uncertainty estimates to initialize ensemble forecasts
- → Flow dependent estimates of background error covariances for use in 4D-Var

See also Massimo Bonavita's Talk in DA Training

The Ensemble of Data Assimilations

See also Massimo Bonavita's Talk in DA Training

Ensemble assimilation and prediction

EDA Mean T 500hPa

EDA Control member

EDA StDev

HRES Analysis

Operational schedule Early delivery suite introduced June 2004

from L. Isaksen

EDA Mean 18 UTC + 6h

T 500hPa

EDA Control 18 UTC + 6h

EDA StDev 18 UTC + 6h

Generation of initial conditions for the ensemble:

$$AN_{pf} = AN_{Hres} \pm (EDA_i - \overline{EDA}) \pm SVPERT_j$$
 $i = 1...25$ $j = 1...25$

EDA: 6h Forecasts

Re-centre EDA-Distribution on Hres-Analysis

$$SVPERT_{j} = \sum_{l}^{NSET} \sum_{k}^{NSV_{l}} \alpha_{lk} SV_{lk}$$

random number drawn from Truncated gaussian

NSET: nhem, shem, TCs1-6

NSV: 50 for nhem and shem, 5 for TCs

T 500hPa

ENS Control 00 UTC + 24h

ENS Mem 1 00 UTC

ENS Mem 1 00 UTC + 24h

ENS Control 00 UTC + 24h

z 500hPa

ENS Control 00 UTC + 120h

ENS Mem 1 00 UTC + 24h

ENS Mean 00 UTC + 24h

z 500hPa

ENS Mean 00 UTC + 120h

ENS StDev 00 UTC + 24h

ENS StDev 00 UTC + 120h

Ocean initial state:

50 Members + 1 Control, 5 Ocean analyses

Member	Ocean analysis
Control	1
Member 1	2
Member 2	3
Member 3	4
Member 5	5
Member 6	1
Member 7	2
Member 50	1

z500 hPa Ensemble StDev, averaged 2016112200 - 2017021300, 00 UTC Run

z500 hPa Ensemble StDev and Ensemble Mean RMSE, averaged 2016112200 - 2017021300, 00 UTC Run

StDev+120h

RMSE+120h

Ensemble Spread vs Error

Ensemble Spread vs Error

control minus experiment

500hPa geopotential

NHem Extratropics (lat 20.0 to 90.0, lon -180.0 to 180.0)

Date: 20160331 00UTC to 20170331 00UTC

T+12 T+24 ... T+360 Confidence: [95.0] | Population: 731

Impact of SVs on ENS

Oper like setup, TCo399, 20 Initial dates

fc-step (d)

4

5

6

2

Thank You!

Date 20161008 00 UTC @ECMWF

Individual trajectories for MATTHEW during the next 240 hours

tracks: **thick solid**=HRES; **thick dot**=CTRL; **thin solid**=EPS members [coloured] 0-24h 24-48h 48-72h 72-96h 96-120h 120-144h 144-168h 168-192h 192-216h 216-240h

List of ensemble members numbers forecast Tropical Cyclone
Intensity category in colours: TD[up to 33] TS[34-63] HR1[64-82] HR2[83-95] HR3[> 95 kt]

10m Wind Speed (kt) solid=HRES; dot=Ens Mean

