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From Optimal Interpolation to 3D-Var
8 Previously in “Assimilation Algorithms”, we derived the linear analysis

equation
xa = xb +K

[
y−H (xb)

]
where

K = PbHT [HPbHT+R
]−1 ≡

[
Pb−1

+HTR−1H
]−1

HTR−1

8 Optimal Interpolation (OI) applies direct solution methods to invert the
matrix

[
HPbHT+R

]
.

8 Data selection is applied to reduce the dimension of the matrix.
8 Direct methods require access to the matrix elements. In particular,

HPbHT must be available in matrix form.
8 This limits us to very simple observation operators.

c©ECMWF 3 / 33



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS October 29, 2014

From Optimal Interpolation to 3D-Var
8 The linear analysis equation could be solved as an equation of the form:

A x = b .

8 There are two forms to solve the linear analysis equation, depending
which expression we adopt for K:

8 For K = PbHT
[
HPbHT+R

]−1
we have:[

HPbHT+R
]

z = y−H (xb) and then xa = xb +PbHT z

8 For K =
[
Pb−1

+HTR−1H
]−1

HTR−1, we have:[
Pb−1

+HTR−1H
]

δx = HTR−1
[
y−H (xb)

]
and then xa = xb+ δx

8 The first of these alternatives is called PSAS
8 The second (although it may not look like it yet) is 3D-Var
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From Optimal Interpolation to 3D-Var
Problem

8 Find the solution xa of the linear system:

Ax = b .

Direct methods
8 Direct methods attempt to solve the problem by a finite sequence of

operations.
8 In the absence of rounding errors, direct methods would deliver an exact

solution xa of the linear system.

Iterative methods
8 Beginning with an approximation to the solution x0, an iterative method is

a mathematical procedure that generates a sequence of improving
approximate solutions x1,x2, · · ·xn.

8 The n-th approximation is derived from the previous ones.
8 The sequence of solutions converges to the exact solution.
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From Optimal Interpolation to 3D-Var
8 Iterative methods have significant advantages over the direct methods

used in OI.
8 They can be applied to much larger problems than direct techniques, so

we can avoid data selection.
8 They do not require access to the matrix elements.
8 Typically, to solve Ax = b, requires only the ability to calculate

matrix-vector products: Ax.
8 This allows us to use operators defined by pieces of code rather than

explicitly as matrices.
8 Examples of such operators include radiative-transfer codes, numerical

models, Fourier transforms, etc.
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Example: Conjugate Gradients
To solve Ax = b, where A is real, symmetric and positive-definite:
r0 := b−Ax0 p0 := r0 k := 0 ;
while rk+1 is too large do

/* Step in the direction of pk */

αk :=
rT
k rk

pT
k Apk

;

/* New state */
xk+1 := xk +αkpk ;
/* New residual */
rk+1 := rk−αkApk ;
/* New direction of descent */

βk :=
rT
k+1rk+1

rT
k rk

;

pk+1 := rk+1+βkpk ;
/* Next iteration */
k := k +1 ;

end
The result is xk+1
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3D-Var
8 As we have seen, (linear) 3D-Var analysis can be seen as an application

of iterative solution methods to the linear analysis equation.
8 Historically, 3D-Var was not developed this way.
8 We will now consider this alternative derivation.
8 We will need to apply Bayes’ theorem:

p(A|B) = p(B|A)p(A)
p(B)

where p(A|B) is the probability of A given B, etc.
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Maximum Likelihood
8 We developed the linear analysis equation by searching for a linear

combination of observation and background that minimised the variance of
the error.

8 An alternative approach is to look for the most probable solution, given the
observations and having a prior knowledge on the solution:

xa = argmax
x

[
p (x|y)

]
8 It will be convenient to define a cost function

J (x) =− log
[
p (x|y)

]
+ const.

8 Then, since log is a monotonic function:

xa = argmin
x

[
J (x)

]
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Maximum Likelihood
8 Applying Bayes’ theorem gives:

p(x|y) = p(y|x)p(x)
p(y)

∝ p(y|x)p(x)

8 The maximum likelihood approach is applicable to any probability density
functions p(y|x) and p(x).

8 However, let us consider the special case of Gaussian p.d.f’s:

p(x) =
1

(2π)N/2|Pb|1/2
exp

{
−1

2
(x−xb)

T Pb−1
(x−xb)

}
p(y|x) =

1
(2π)M/2|R|1/2

exp

{
−1

2

[
y−H (x)

]T
R−1
[
y−H (x)

]}
8 Now, J(x) =− log

[
p(y|x)

]
− log

[
p(x)

]
+ const.

8 Hence, with an appropriate choice of the constant const.:

J(x) =
1
2
(x−xb)

T Pb−1
(x−xb)+

1
2

[
y−H (x)

]T
R−1
[
y−H (x)

]
8 This is the 3D-Var cost function
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Maximum Likelihood
8 Let us introduce the dot product:

〈x1,x2〉 = xT
1 x2

8 The dot product is symmetric:

〈x1,x2〉 = 〈x2,x1〉

8 If A is symmetric (AT = A):

〈x1,Ax2〉 = 〈Ax1,x2〉

8 Else AT is the adjoint of A:

〈x1,Ax2〉 = 〈ATx1,x2〉
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Maximum Likelihood
8 The maximum likelihood analysis corresponds to the global minimum of

the cost function (using the previously defined dot product):

J(x) =
1
2

〈[
x−xb

]
, Pb−1[

x−xb
]〉

+
1
2

〈[
y−H (x)

]
, R−1

[
y−H (x)

]〉
8 Let introduce a perturbation δx of x. Now, if H is linear (or if we neglect

second-order terms) then

H (x+δx) = H (x)+Hδx .

8 The cost function evaluated at x+δx is then

J(x+δx) = J(x)+
〈

δx , Pb−1[
x−xb

]〉
−
〈

Hδx , R−1
[
y−H (x)

]〉
= J(x)+

〈
δx , Pb−1[

x−xb
]
−HTR−1

[
y−H (x)

]〉
= J(x)+

〈
δx , ∇J(x)

〉
.

8 We deduce the gradient of the cost function

∇J(x) = Pb−1[
x−xb

]
+HTR−1

[
H (x)−y

]
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Maximum Likelihood
8 At the minimum xa, the gradient of the cost function (∇J(x)) is zero:

∇J(xa) = Pb−1[
xa−xb

]
+HTR−1

[
H (xa)−y

]
= 0

8 Now, if H is linear (or if we neglect second-order terms) then

H (xa) = H (xb)+Hδxa

where δxa = xa−xb

8 Hence:
Pb−1

δxa+HTR−1
[
H (xb)−y

]
+HTR−1Hδxa = 0

8 Rearranging a little gives:[
Pb−1

+HTR−1H
]

δxa = HTR−1
[
y−H (xb)

]
8 This is exactly the equation for the minimum-variance analysis we derived

at the start of the lecture!
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Maximum Likelihood
8 We have shown that the maximum likelihood approach is naturally

expressed in terms of a cost function representing minus the log of the
probability of the analysis state.

8 The minimum of the cost function corresponds to the maximum likelihood
(probability) solution.

8 For Gaussian errors and linear observation operators, the maximum
likelihood analysis coincides with the minimum variance solution.

8 This is not the case in general:

xML xMEAN

P
 (

x
 |
 y

)

x
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Maximum Likelihood
8 In the nonlinear case, the minimum variance approach is difficult to apply.
8 The maximum-likelihood approach is much more generally applicable
8 As long as we know the p.d.f’s, we can define the cost function

ë However, finding the global minimum may not be easy for highly non-Gaussian
p.d.f’s.

8 In practice, background errors are usually assumed to be Gaussian (or a
nonlinear transformation is applied to make them Gaussian).

ë This makes the background-error term of the cost function quadratic.

8 However, non-Gaussian observation errors are taken into account. For
example:

ë Directionally-ambiguous wind observations from scatterometers
ë Observations contaminated by occasional gross errors, which make outliers much

more likely than implied by a Gaussian model.
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Minimisation
8 In 3D-Var, the analysis is found by minimising the cost function:

J(x) =
1
2
(x−xb)

T Pb−1
(x−xb)+

1
2

[
y−H (x)

]T
R−1
[
y−H (x)

]
8 This is a very large-scale (dim(x)≈ 108) minimisation problem.
8 The size of the problem restricts on the algorithms we can use.
8 Derivative-free algorithms (which require only the ability to calculate J(x)

for arbitrary x) are too slow.
8 This is because each function evaluation gives very limited information

about the shape of the cost function.
ë E.g. a finite difference, J(x+δv)− J(x)≈ δvT∇J(x), gives a single component of

the gradient.
ë We need O(108) components to work out which direction is “downhill”.
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Minimisation
8 Practical algorithms for minimising the 3D-Var cost function require us to

calculate its gradient:

∇J(x) = Pb−1
(x−xb)+HTR−1

[
H (x)−y

]
8 The simplest gradient-based minimisation algorithm is called steepest

descent:
Let x0 be an initial guess of the analysis;
while gradient is not sufficiently small do

/* Define a descent direction */
dk =−∇J(xk);
/* Find a step αk, e.g. by line minimisation of the

function J(xk +αdk), for which J(xk +αdk)< J(xk) */
αk = · · · ;
/* Compute the new estimate */
xk+1 = xk +αdk ;
/* Next step */
k = k +1

end
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Minimisation

8 Steepest descent can work well on
problems in which the iso-surfaces
of the cost function are nearly
spherical.

ë In this case, the steepest descent
direction points towards the
minimum.

ë They are very well conditioned
problems.

8 For problems with ellipsoidal
iso-surfaces, steepest descent is
not efficient.

ë They are poorly conditioned
problems.

8 The second derivatives of the cost
function gives indication of the
cost function curvature.
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Preconditioning
8 The steepest descent method works best if the iso-surfaces of the cost

function are approximately spherical.
8 This is generally true of all minimisation algorithms.
8 In general, expressing the cost function directly in terms of x will not lead

to spherical iso-surfaces.
8 The degree of sphericity of the cost function can be measured by the

eigenvalues of the Hessian (matrix J ′′ of second derivatives of J).
ë Each eigenvalue corresponds to the curvature in the direction of the corresponding

eigenvector.

8 In particular, the convergence rate will depend on the condition number:

κ =
λmax

λmin
,

where λmax and λmin are the maximum and minimum eigenvalues
respectively.
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Preconditioning
8 We can speed up the convergence of the minimisation by a change of

variables χ = L−1(x−xb), where L is chosen to make the cost function
more spherical.

8 A common choice is L = Pb1/2. The cost function becomes:

J(χ) =
1
2

χ
T
χ+

1
2

[
y−H (xb +Lχ)

]T
R−1
[
y−H (xb +Lχ)

]
8 With this change of variables, the Hessian becomes:

J ′′χ = I+LTHTR−1HL (plus higher order terms)

8 The presence of the identity matrix in this expression guarantees that the
minimum eigenvalue is ≥ 1.

8 There are no small eigenvalues to destroy the conditioning of the problem.
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Newton’s methods
8 Steepest Descent is inefficient because it does not use information about

the curvature of the cost function.
8 The simplest algorithms that use curvature are in the family of Newton’s

methods.
8 Newton’s methods use a local quadratic approximation:

J(x+δx)≈ J(x)+δxT
∇J(x)+

1
2

δxTJ ′′δx

8 Taking the gradient gives:

∇J(x+δx)≈ ∇J(x)+ J ′′δx

8 Since the gradient is zero at the minimum, Newton’s method chooses the
step at each iteration by solving:

J ′′δx =−∇J(x)
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Newton’s methods
8 Newton’s method:

Start with an initial guess, x0;
while gradient is not sufficiently small do

/* Solve J ′′δxk =−∇J(xk) */
δxk = · · · ;
/* Compute the new estimate */
xk+1 = xk +δxk ;
/* Next step */
k = k +1

end
8 Newton’s method works well for cost functions that are well approximated

by a quadratic — i.e. for quasi-linear observation operators.
8 However, it suffers from several problems. . .
8 There is no control on the step length ‖δx‖. The method can make huge

jumps into regions where the local quadratic approximation is poor.
ë This can be controlled using line searches, or by trust region methods that limit the

step size to a region where the approximation is valid.
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Newton’s methods
8 Newton’s method requires us to solve J ′′δxk =−∇J(xk) at every iteration.
8 Now, J ′′ is a ∼ 108×108 matrix! Clearly, we cannot explicitly construct the

matrix, or use direct methods to invert it.
8 However, if we have a code that calculates Hessian-vector products, then

we can use an iterative method (e.g. conjugate gradients) to solve for δxk .
8 Such a code is call a second order adjoint. See Wang, Navon, LeDimet,

Zou, 1992 Meteor. and Atmos. Phys. 50, pp3-20 for details.
8 Alternatively, we can use a method that constructs an approximation to

(J ′′)−1.
8 Methods based on approximations of J ′′ or (J ′′)−1 are called quasi-Newton

methods.
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Newton’s methods
8 By far the most popular quasi-Newton method is the BFGS algorithm,

named after its creators Broyden, Fletcher, Goldfarb and Shanno.
8 The BFGS method builds up an approximation to the Hessian:

Bk+1 = Bk +
ykyT

k

yksT
k
− Bksk (Bksk)

T

skBksT
k

where sk = xk+1−xk and yk = ∇J(xk+1)−∇J(xk).
8 The approximation is symmetric and positive definite, and satisfies

∇J(xj+1)−∇J(xj) = J ′′(xj+1−xj) for j = 0,1, · · · ,k

8 There is an explicit expression for the inverse of Bk , which allows Newton’s
equation to be solved at the cost of O(Nk) operations.
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Newton’s methods
8 The BFGS quasi-Newton method:

Start with an initial guess, x0 ;
Start with an initial approximation of the Hessian (typically,B0 = I);
while gradient is not sufficiently small do

/* Solve the approximate Newton’s equation,
Bkδxk =−∇J(xk), to determine the search direction. */

δxk = · · · ;
/* Perform a line search to find a step αk for which for

which J(xk +αkδxk)< J(xk) */
αk = · · · ;
/* Compute the new estimate */
xk+1 = xk +αkδxk ;
/* Generate an updated approximation to the Hessian */
Bk+1 = · · · ;
/* Next step */
k = k +1

end
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Newton’s methods
The BFGS quasi-Newton method

8 As k increases, the cost of storing and applying the approximate Hessian
increases linearly.

8 Moreover, the vectors sk and yk generated many iterations ago no longer
provide accurate information about the Hessian.

8 It is usual to construct Bk from only the O(10) most recent iterations.
8 The algorithm is then called the limited memory BFGS method.
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Newton’s methods
8 The methods presented so far apply to general nonlinear functions.
8 An important special case occurs if the observation operator H is linear. In

this case, the cost function is strictly quadratic, and the gradient is linear:

∇J(x) = Pb−1
δx+HTR−1

[
H (xb)+Hδx−y

]
=
[
Pb−1

+HTR−1H
]

δx+HTR−1
[
H (xb)−y

]
8 In this case, it makes sense to determine the analysis by solving the linear

equation ∇J(x) = 0.

8 Since the matrix
[
Pb−1

+HTR−1H
]

is symmetric and positive definite, the
best algorithm to use is conjugate gradients. The algorithm was presented
earlier in this lecture.

8 A good introduction to the method can be found online: Shewchuk (1994)
“An Introduction to the Conjugate Gradient Method Without the Agonizing
pain”.
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Calculating the Gradient
8 To minimise the cost function, we must be able to calculate gradients.
8 If we precondition using L, the gradient (with respect to χ) is:

∇χJ(χ) = χ+LTHTR−1 (y−H (xb +Lχ))

8 Typically, R is diagonal — observation errors are treated as being mutually
uncorrelated.

8 However, the matrices HT, LT and L are not diagonal, and are much too
large to be represented explicitly.

8 We must represent these as operators (subroutines) that calculate
matrix-vector products.
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Calculating the Gradient
8 Take H as an example. Each line of the subroutine that applies H can be

considered as a function hk , so that

H (x)≡ hK (hK−1 (· · · (h1(x))))

8 Each of the functions hk can be linearised, to give the corresponding linear
function hk . Each of these is extremely simple, and can be represented by
a one or two lines of code.

8 The resulting code is called the tangent linear of H .

H(x)≡ hK hK−1 · · ·h1x

8 The transpose, HT(x)≡ hT
1hT

2 · · ·hT
K x, is called the adjoint of H .

8 Again, each hT
k is extremely simple — just to a few lines of code.

Tangent Linear and Adjoints
There is a whole 1-hour lecture on tangent linear and adjoint operators Friday
when you will learn to derive tangent linear and adjoint equations for a simple
nonlinear equation.
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Summary
8 We showed that 3D-Var can be considered as an iterative procedure for

solving the linear (minimum variance) analysis equation.
8 We also derived 3D-Var from the maximum likelihood principle.
8 The Maximum Likelihood approach can be applied to non-Gaussian,

nonlinear analysis.
8 We introduced the 3D-Var cost function.
8 We considered how to minimise the cost function using algorithms based

on knowledge of its gradient.
8 We looked at a simple preconditioning.
8 Finally, we saw how it is possible to write code that computes the gradient.
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