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Outline

The importance of the ocean initial conditions in SF

Ocean Model initialization

The value of observational information: fluxes, SST, ocean observations
The difficulties

The traditional Full Initialization approach: pros and cons.

Other approaches. Assessment

Full Initialization, Anomaly Initialization
Coupled Initialization
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The basis for extended range forecasts

eForcing by boundary conditions changes the atmospheric circulation,
modifying the large scale patterns of temperature and rainfall, so that
the probability of occurrence of certain events deviates significantly
from climatology.

» Important to bear in mind the probabilistic nature of SF

eThe boundary conditions have longer memory, thus contributing to the
predictability. Important boundary forcing:

> Tropical SST: ENSO, Indian Ocean Dipole, Atlantic SST
» Land: snow depth, soil moisture

> Sea-Ice

» Mid-Latitude SST

» Atmospheric composition: green house gases, aerosols,...
» Stratosphere

Predictability Training Course -Initialization Strategies in Seasonal Forecasting



Importance of Initialization

eAtmospheric point of view: Boundary condition problem

» Forcing by lower boundary conditions changes the PDF of the
atmospheric attractor

" oaded dice”

eOceanic point of view: Initial value problem

» Prediction of tropical SST: need to initialize the ocean subsurface.

o Emphasis on the thermal structure of the upper ocean
o0 Predictability is due to higher heat capacity and predictable dynamics
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End-To-End Seasonal forecasting System
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Dealing with model error: Hindcasts

Ocean Real time Probabilistic
reanalysis Coupled Forecast
time lllllllllllllllll —
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Coupled Hindcasts, needed to estimate climatological PDF,
require a historical ocean reanalysis

Consistency between historical
and real-time initial conditions is
required.

Hindcasts are also needed for skill estimation
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Initialization Problem: Production of Optimal I.C.

e Optimal Initial Conditions: those that produce the best forecast.

Need of a metric: lead time, variable, region (i.e. subjective choice)
Usually forecast of SST indices, lead time 1-6 months

e Theoretically, initial conditions should represent accurately the state of the
real world and project into the model attractor, so the model is able to

evolve them.

Difficult in the presence of model error

e Practical requirements: Consistency between re-forecasts and real time fc

Need for historical ocean reanalysis
e Current Priorities:

o Initialization of SST and ocean subsurface.
o Land/ice/snow
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Initialization into Context

A decade of progress on ENSO | o
Relative Reduction in SST Forecast Error

P rediction ECMWF Seasonal Forecasting Systems
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How do we initialize the ocean?

To a large extent, the large scale ocean variability is forced by the
atmospheric surface fluxes.

Different ocean models forced by the same surface fluxes will produce similar tropical variability.
Daily fluxes of heat (short and long wave, latent, sensible heat), momentum and fresh water fluxes. Wind

stress is essential for the interannual variability.

OCEAN MODEL +
1. Fluxes from atmospheric models: Constrained by SST

have large systematic errors and a large unconstrained chaotic component
2. Fluxes from atmospheric reanalysis: Constrained by SST+ Atmos Obs.

Reduced chaotic component and systematic error. But still large errors/uncertainty

3. Fluxes from atmos reanalysis+0Ocean Obs ( SST+Atmos Obs+0Ocean Obs):

Ocean re-analysis. Difficulties: Changing observing system and model error
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Information to initialize the ocean

¢ Ocean model Plus:

SST
Atmospheric fluxes from atmospheric reanalysis
Subsurface ocean information

Time evolution of the Ocean Observing System

1982 1993 2001

L L P

XBT’s 60’s Satelllte SST MoorlngsIAItlmeterARGO
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Uncertainty in Surface Flux

Need for Data Assimilation oo

0005

Large uncertainty in wind products

eavnis]

lead to large uncertainty in the

—0.005

ocean subsurface

=20

The possibility is to use additional
information from ocean data

(temperature, others...)

—0,00

eQuestions:

1.Does assimilation of ocean
data constrain the ocean state?
YES

2.Does the assimilation of ocean
data improve the ocean
estimate? YES

3.Does the assimilation of ocean
data improve the seasonal
forecasts. YES
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The Assimilation corrects the ocean mean state

Mean Assimation Temperature Increment

0

100 )

N
o
o
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Equatorial Pacific (x)

N
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500

50°E

Longitude

Data assimilation corrects the slope £

and mean depth of the equatorial
thermocline

Free model
Data Assimilation
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Ocean Observing System
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Impact of data assimilation on the mean

EQATL Depth of the 20 degrees |sotherm

j Assim of mooring data

CTL=No data
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1993 1994 1995 1996 1997 199\ 1999 2000 2001 2002

Time PIRATA
Large impact of data in the mean state leading to spurious variability

This is largely solved by the introduction of bias correction



Need to correct model  a_y (p),kpy-Hx'
bias during assimilation

Number of Temperature Observations Depth= 500.0 meters
T T T T T T T T T T T T T T T T T T T

b*=b" +L[y—-HX"+b")]

ALL
XBT B

g&gg - There is a model for the time evolution of
the bias f — ) f
b, =b, +b,

This is an important difference with respect to the
atmos data assimilation, where FG is assumed
unbiased
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Temperature Bias Estimation from Argo: 300m-700m
T T T
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Without explicit bias correction changes in the
observing system can induce

Spurious signals in the ocean reanalysis
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Non-stationarity of the forecast bias, leading to forecast E o & ~ _
errors. i | ‘ | ]
Idea”y, the b|aS |nf0rmat|on Should be propagated (C/h): Min= -1.26-03, Max= 7.5e-04, Int= 4.0e-05
during the forecast (for this the FG model and FC model IR .

should be the same, e.i. coupled model)
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Effect of bias correction on the time-evolution

EQATL Depth of the 20 degrees isotherm
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Time correlation with altimeter SL product
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Anomaly correlation

Anomaly correlation

Impact on Seasonal Forecast Skill

Consistent Improvement everywhere. Even in the Atlantic, traditionally challenging area

Central equatorial Pacific
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Quantifying the value of observational information

e The outcome may depend on the coupled system

e In a good system information may be redundant, but not detrimental.

If adding more information degrades the results, there is something wrong with the
methodology (coupled/assim system)

e Experiments conducted with the ECMWF S3

Balmaseda and Anderson 2009, GRL

SST (SYNTEX System Luo et al 2005, Decadal Forecasting Keenlyside et al, 2008)
SST+ Atmos observations (fluxes from atmos reanalysis)

SST+ Atmos observations+ Ocean Observations (ocean
reanalysis)
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Impact of “real world” information on skill:

Reduction in Error (MAE) in SST SF by
adding observational information

30 -
25 .
20 -
15 - @ OC DATA
£ 10 - B WINDS
5 - W ﬁ O DATA+WINDS
O -

NINO4
TRPAC
IND1
IND2
NSTRATL
EQATL

NINO3
NINO3.4
EQIND

The additional information about the real world improved the forecast skill,
except in the Equatorial Atlantic

Optimal use of the observations needs more sophisticated assimilation techniques and better
models, to reduced initialization shock
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Initialization and forecast drift

NINO3 mean SST drift

Drift (deg C)

ALL ATMOS+SST SST only

'37\TY\1T\\T
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Calendar month

10 11 12 13 14 15 16 17 18

Sign of non linearity:
The drift in the mean affects the variability

Different initializations produce different drift in
the same coupled model.

Warm drift in ALL caused by Kelvin Wave, triggered by the
slackening of coupled model equatorial winds

SST only has very little equatorial heat content, and the
SST cool s down very quickly.

SST+ATMOS seems balanced in this region. Not in others

NINO3 SST anomaly amplitude ratio
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Seasonal Forecasts Approach ool
Some caveal’;s I‘ 3333) %7?

—— {—-mon-lead
74 —— 8-mon-lead

ml a’ll ) '0 h- f) h'h,

' "rmw ’. VAR

- SST FC bias
CFS.v2
—3' I Kumar et al 2011 MWR
1985 1990 1995 2000 2005 2010

 Non-stationary model error.
« Seasonal cycle dependence, which is known and catered for.
« Other unknown dependences not considered: trends, changes in observing system
« Drift depends of lead time. A large number of hindcasts is needed. This is even more
costly in decadal forecasts.

- Initialization shock can be larger than model bias

Non-linearities and non-stationarity can sometimes render the aposteriori calibration invalid
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Full Initialization Anomaly Initialization

Model climatology
+observed anomaly

Long

coupled :
integratio

The model climatology does not depend of
forecast lead time. Cheaper in principle
than hindcasts.

b :

=
=
=
=il

As Medium range but:
Model bias taken into account during DA.

A posteriori calibration of forecast is needed.

Calibration depends on lead time. But hindcasts are still needed for skill
estimation

The model during the initialization is different Acknowledgment of existence of model

from the forecast model. Bias correction error during initialization.

estimated during initialization can not be applied

during the forecasts Model error is not corrected (“bias

blind algorithm”):

X*=x"+b" +K[y—H(KX" +b")] x*=x' +K[(y-y)-H(x' —x)]

b®=b' +L[y—-H(x' +b")]
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Anomaly Initialization (Cont)

Two flavours

1. One-Tier anomaly initialization (Smith et al 2007). Ocean observations are assimilated
directly. Background error covariance formulation derived from coupled model (EOFs,

EnOI, EnKF). Emphasis on large spatial scales

2. Two-Tier anomaly initialization (Pohlmann et al 2009). Nudging of anomalies from
existing ocean re-analysis. The spatial structures are those provided by the source re-

analysis.

Limitations

e It assumes quasi-linear regime.

e Sampling: how to obtain an observed climatology equivalent to the model climate?
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Initialization Shock and Skill

non-linear
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Initialization Shock and non linearities

non-linear
interactions
Important
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Comparison of Strategies for dealing with systematic errors
in @ coupled ocean-atmosphere forecasting system
as part of the EU FP7 COMBINE project

Naturewclima FﬁI

Flux correction
<€— Normal initialisation
Anomaly initialisation

Magnusson et al. 2012a, Clim Dyn . Also ECMWF Techmemo 658
Magnusson et al. 2012b, Clim Dyn. Also ECMWF Techmemo 676
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Coupled model error

SST bias: model - analysis

10m winds: model - analysis

Part of the error comes from the
atmospheric component (too
strong easterlies at the equator)

The error amplifies in the coupled
model (positive Bjerkness
feedback).

Possibility of flux correction

e _—

a) Coupled model

From Magnusson et al 2012 Clim Dyn.
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Different mean states

Agg'VS'S Coupled Free Coupled Ucor Coupled UHcor
== T - v ewe
al
| v Sb
m— L TTE IEMWORNE TR W

I Vartbcal e socSn of s bemparabars slong 4 agualor 5 4-25-1 25 -7-15-1 £EBE 115 2 15 2 25 4 &

A54-251 35T T AL T 15 F 15T 16 4 45

B Cres-saction of the equaional temparrtus: bas iy Crcess- saction of tha equaiional temparaturs bas

&AL 425125 7-15-1-E5EE 1 15 7 15 3 46 4 &%
b Croes-saction of tha equatornzl lempesturs bas

g
Flygure 4 Mian o the nawafyads o 1953 o 990

Ucor: surface wind is
corrected when
passed to the ocean

UHCor: surface wind
and heat flux are
corrected when passed
to the ocean
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Comparison of Forecast Strategies:

MEAN DRIFT Interannual Variability

Nino 3 SST Drift 1-14 month forecast FC sdv / AN sdv

Inter-anmua waniability

Lead time [months)

Analysis Full Ini Anomaly Ini U Correction U+H correction
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Nino3.4 SST forecasts November 1995 — November 1998

Full Initialization Anomaly Initialisation

Nino3.4 SST Nino3.4 SST

JANIAN AULIOL JANJAN JULIUL JANIAN ALIUL JANIAN
6 19997 199898 199®99

U-flux correction U- and H-flux correction

Nino3.4 SST Nino3.4 SST

Linus Magnusson et al.
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Impact on Forecast Skill (ACC)

The impact of initialization/forecast

strategy depends on the region.

When the mean state matters
(convective precip), the anomaly

Initialization

underperforms

Persistence Full Ini Anomaly Ini

U Correction U+H correction
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Anomaly correlation
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What about Full Coupled Initialization?

e Advantages:

> Hopefully more balanced ocean-atmosphere i.c and perturbations. Important for tropical
convection

» Framework to treat model error during initialization and fc

If the FG and FC models are the same, the (3D) bias correction estimated during the initialization can
(should) be applied during the forecast.

» Consistency across time scales (seamlessness):

currently, weather forecasts up to 10 days use “extreme flux correction”, since SST is prescribed. For longer
lead times a free coupled model is used. More gradual transition?

e Current Approaches

Weakly Coupled Data assimilation: FG with coupled model, separate DA of ocean and atmos.

Example is NCEP with CFSR, and ECMWF-ESA CERA project, CERA-20C and CERA-SAT (ERACLIM2
project)
Strongly Coupled Data assimilation: Coupled FG, Coupled Covariances. Usually EnKF

e Challenges:

» Different time scales of ocean atmosphere . Long window weak constrain?
» Cross-covariances. Ensemble methodology more natural?
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Coupled Initialization and Forecast Shock

M1
Uncoupled Ini
AN mod .ne. FC mod

ERA-Interim analysis

TE'[I'I'IDB

M1 forecast

Tl:ll:-'ilﬂ

DORASA analysis

Laloyaux et al QJ
Mulholland et al MWR
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Forecast Shock depends on Initialization

RMSE (vs own analysis), 1000hPa, Nino3 (2008-2010, 30 dates)

1.2

1.0

0.2 — (1 v CERA
Ul v U atmos
_ — M1 v ERA-Interim
0 2 4 6 8 10
Lead time / days

Coupled Ini with CERA has the
slowest Forecast Error Growth

From Mulholland et al, MWR
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Summary

e Seasonal Forecasting (SF) of SST is an initial condition problem

e Assimilation of ocean observations reduces the large uncertainty (error) due to the
forcing fluxes. Initialization of Seasonal Forecasts needs SST, subsurface temperature,

salinity and altimeter derived sea level anomalies.
e Data assimilation improves forecast skill.

e Data assimilation changes the ocean mean state. Therefore, consistent ocean

reanalysis requires an explicit treatment of the bias

e The separate initialization of the ocean and atmosphere systems can lead to
initialization shock during the forecasts. A more balance “coupled” initialization is

desirable, but it remains challenging.

e Initialization and forecast strategy go together. The best strategy may depend on the

model. The anomaly initialization used in decadal forecasts is suboptimal in seasonal.

”
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