Single-Column Model

Introduction

Filip Váňa

filip.vana@ecmwf.int

Modelling Basics

Prognostic quantity X described by an atmospheric model can be formally written as:

$$X = \bar{X} + x$$

 \bar{X} ... part resolved by the model

 $x \cdots$ the sub-grid component

Governing equations:

$$\frac{\partial \bar{X}}{\partial t} = \underbrace{\mathcal{D}_{LS}(\bar{X})}_{\text{resolved}} + \underbrace{\mathcal{F}_{SS}(\bar{X}) + S_i}_{\text{parameterized}}$$

numerics

physical

processes

Modelling Basics - II.

numerics

 $\stackrel{\longleftarrow}{\longrightarrow}$

physical

processes

Atmospheric models:

 $L_{\mathsf{hor}} >> L_{\mathsf{ver}}$

- Numerics: 3D problem
 - → frequently separated to horizontal and vertical parts
- Physics: Horizontal component usually neglected
 - → treated like set of independent vertical columns

Single-Column Model

Simplistic approach: Small scale processes are fully determined by

inter-process ballance and large scale forcing:

 $\begin{array}{c} \text{numerics} & \rightarrow \\ \text{processes} \end{array}$

$$\frac{\partial \bar{X}}{\partial t} = \mathcal{D}_{\text{Ver}}(\bar{X}) + \mathcal{F}_{SS}(\bar{X}) + S_i + \mathcal{D}_{\text{hor}}(\bar{X}) - \alpha \frac{\bar{X} - \bar{X_0}}{\tau}$$

 $\mathcal{D}_{\mathsf{Ver}}(\bar{X})$... large scale tendency (no horizontal component)

 $\mathcal{F}_{SS}(\bar{X}) + S_i \quad \cdots \quad$ physics = subgrid scale and source terms tenden

 $\mathcal{D}_{\mbox{hor}}(\bar{X}) - \cdots$ prescribed horizontal large scale tendency

 $\alpha^{rac{ar{X}-ar{X_0}}{ au}}$ ··· relaxation term towards $ar{X_0}$

Conclusions

- SCM modelling is an efficient and simplistic tool to study model physics. (Cost and data access is no longer an issue.)
- Stability of a SCM is fully determined by its large scale forcing: Allows to study subset of processes or single process only. Very useful for comparing different versions of the same scheme.
- Quality strongly depends on large-scale forcing and SCM setting: Often leads to biassed results.
- Comparing with observation is a delicate matter.
- All conclusions from SCM should be verified in 3D model.