
ECMWF training course
January 23-27 2017

I/O practicals darshan – ccb

N O T E S:

1. Remember to login to the HPC: ccb
2. See slides, man pages or online documentation.
3. Some job examples are available under:

https://software.ecmwf.int/wiki/display/UDOC/Batch+environment%3A++PBS

4. Create a subdirectory for this practical session, e.g.

% cd $SCRATCH

% tar xzf ~trx/io-darshan/io-darshan-practicals.tar.gz

% cd io-darshan

BENCHMARK description

IOR can be used for testing performance of parallel file systems using various
interfaces and access patterns. IOR uses MPI for process synchronization.

* 3. RUNNING IOR *

Two ways to run IOR:

 * Command line with arguments -- executable followed by command line options.

 E.g., to execute: IOR -w -r -o filename

 This performs a write and a read to the file 'filename'.

 * Command line with scripts -- any arguments on the command line will

 establish the default for the test run, but a script may be used in

 conjunction with this for varying specific tests during an execution of the

 code.

 E.g., to execute: IOR -W -f script

 This defaults all tests in 'script' to use write data checking.

* 4. OPTIONS *

These options are to be used on the command line. E.g., 'IOR -a POSIX -b 4K'.

 -A N testNum -- test number for reference in some output

 -a S api -- API for I/O [POSIX|MPIIO|HDF5|NCMPI]

 -b N blockSize -- contiguous bytes to write per task (e.g.: 8, 4k, 2m, 1g)

 -B useO_DIRECT -- uses O_DIRECT for POSIX, bypassing I/O buffers

 -c collective -- collective I/O

 -C reorderTasks -- changes task ordering to n+1 ordering for readback

 -Q N taskPerNodeOffset for read tests use with -C & -Z options (-C constant N, -Z

at least N) [!HDF5]

 -Z reorderTasksRandom -- changes task ordering to random ordering for readback

 -X N reorderTasksRandomSeed -- random seed for -Z option

 -d N interTestDelay -- delay between reps in seconds

 -D N deadlineForStonewalling -- seconds before stopping write or read phase

 -Y fsyncPerWrite -- perform fsync after each POSIX write

 -e fsync -- perform fsync upon POSIX write close

 -E useExistingTestFile -- do not remove test file before write access

https://software.ecmwf.int/wiki/display/UDOC/Batch+environment%3A++PBS

 -f S scriptFile -- test script name

 -F filePerProc -- file-per-process

 -g intraTestBarriers -- use barriers between open, write/read, and close

 -G N setTimeStampSignature -- set value for time stamp signature

 -h showHelp -- displays options and help

 -H showHints -- show hints

 -i N repetitions -- number of repetitions of test

 -I individualDataSets -- datasets not shared by all procs [not working]

 -j N outlierThreshold -- warn on outlier N seconds from mean

 -J N setAlignment -- HDF5 alignment in bytes (e.g.: 8, 4k, 2m, 1g)

 -k keepFile -- don't remove the test file(s) on program exit

 -K keepFileWithError -- keep error-filled file(s) after data-checking

 -l storeFileOffset -- use file offset as stored signature

 -m multiFile -- use number of reps (-i) for multiple file count

 -n noFill -- no fill in HDF5 file creation

 -N N numTasks -- number of tasks that should participate in the test

 -o S testFile -- full name for test

 -O S string of IOR directives (e.g. -O checkRead=1,lustreStripeCount=32)

 -p preallocate -- preallocate file size

 -P useSharedFilePointer -- use shared file pointer [not working]

 -q quitOnError -- during file error-checking, abort on error

 -r readFile -- read existing file

 -R checkRead -- check read after read

 -s N segmentCount -- number of segments

 -S useStridedDatatype -- put strided access into datatype [not working]

 -t N transferSize -- size of transfer in bytes (e.g.: 8, 4k, 2m, 1g)

 -T N maxTimeDuration -- max time in minutes to run tests

 -u uniqueDir -- use unique directory name for each file-per-process

 -U S hintsFileName -- full name for hints file

 -v verbose -- output information (repeating flag increases level)

 -V useFileView -- use MPI_File_set_view

 -w writeFile -- write file

 -W checkWrite -- check read after write

 -x singleXferAttempt -- do not retry transfer if incomplete

 -z randomOffset -- access is to random, not sequential, offsets within a file

NOTES: * S is a string, N is an integer number.

 * For transfer and block sizes, the case-insensitive K, M, and G

 suffices are recognized. I.e., '4k' or '4K' is accepted as 4096.

EXERCISE 0
To compile IOR, you have to follow these steps:

cd src/IOR

module unload atp

#make sure that PrgEnv-cray/5.2.82 is loaded

make mpiio

cp src/C/IOR ../../bin/

EXERCISE 1

In this exercise we are profiling the I/O of some POSIX ways to read/write a single
file or several files with Darshan.

Comparison between 144 tasks writing one single file vs. 144 tasks writing 144
different files
This exercise will help to check the difference between write/read a single file and
write/read 1 file per task.

1. Go to $SCRATCH/io-darshan/run/single-multiple folder.
2. You have to complete the job-posix.pbs script with the correct values

(search for #TODO and “…”).
a. Unload the atp module and load darshan module
b. Export DARSHAN_LOG_DIR to some location in $SCRATCH
c. Replace ##arguments## by the proper IOR arguments:

single-shared-file benchmark
Command line used: ${EXE} -C -t 2m -b 500m -i 1 -a POSIX -w -r

Summary:

 api = POSIX

 test filename = testFile

 access = single-shared-file

 clients = 144 (72 per node)

 repetitions = 1

 xfersize = 2 MiB

 blocksize = 500 MiB

 aggregate filesize = 70.31 GiB

file-per-process benchmark
Command line used: ${EXE} -F -C -t 2m -b 500m -i 1 -a POSIX -w

-r

Summary:

 api = POSIX

 test filename = testFile

 access = file-per-process

 clients = 144 (72 per node)

 repetitions = 1

 xfersize = 2 MiB

 blocksize = 500 MiB

 aggregate filesize = 70.31 GiB

Now submit the job using qsub.
(We have created the two darshan logs in darshan-logs directory to prevent waiting
in the queue and the execution. Once running the job lasts about 10 minutes).
HINT: To compare both summaries, we suggest you to use xxdiff command.
Generate two different text files to compare redirecting stdout:
module load darshan

darshansummary user_xxxx_t2b500_IOR_xxx.darshan.gz > single-

shared

darshansummary user_xxxx_t2b500F_IOR_xxx.darshan.gz > file-

per-process

xxdiff single-shared file-per-process

Fill in the table:

 single-shared-file file-per-process

Read time per task

Write Time per task

Number of different files

What is the best way to achieve the best performance? Why?

EXERCISE 2
Comparison of 144 tasks writing a single file using MPI-IO with and without
stripe
In this exercise you are writing a single file of 70.31 GB in a folder that does not have
stripe and then in a folder with stripe. Both tests will use MPI-IO to write the file using
aligned chunks.

1. Go to $SCRATCH/io-darshan/run/mpiio folder.
2. You have to complete job-mpiio.pbs (again #TODO and ##arguments##)

a. First you have to create two different folders called:
i. MPIIO

1. mkdir MPIIO

ii. MPIIO_stripe
1. mkdir MPIIO_stripe

b. Then set the 2M stripe to MPIIO-stripe. Use this command:
lfs setstripe -S 2097152 -c 4 MPIIO_stripe

This will set a stripe of 2MB per OST with a count of 4 OSTs per file.
Allowing MPI-IO to enhance the read/write

c. Both arguments should be:
–C –t 2m –b 500m –I 1 –a MPIIO –w -r

Then the job will submit two aprun commands, one in the MPIIO directory and the
other on MPIIO-stripe. Both will use MPI-IO to write a single-shared-file of 70.31GiB
in chunks of 500Mb, one per process. Then you can compare the effect of the stripe
and MPI-IO.
This job takes around 15 minutes. You can use the logs in darshan-logs directory.

 No-stripe stripe

Read time per task

Write Time per task

Meta Time per task

Now try with different stripe sizes (4MB, 8MB) and different transfersize (-t)
parameters?

