

Cray XC40 Architecture Overview

Ilias Katsardis ikatsardis@cray.com

Agenda

- XC40 The basics
- Packaging
- Board-level
- Processor
- Network
- Cooling
- Lustre Storage

Cray's recipe for a good supercomputer

Function of time

Surround it with a bandwidth-rich environment

- Interconnection network
- Local memory

Scale the system

- Eliminate operating system interference (OS jitter)
- Design in reliability and resiliency
- Provide scalable system management
- Provide scalable I/O
- Provide scalable programming and performance tools
- System service life

Nodes: The building blocks

The Cray XC40 is a Massively Parallel Processor (MPP) supercomputer design. It is therefore built from many thousands of individual nodes.

There are two basic types of nodes in any Cray XC40:

- Compute nodes
 - These only do user computation and are always referred to as "Compute nodes"

Service nodes

- These provide all the additional services required for the system to function, and are given additional names depending on their individual task:
 - Login nodes allow users to log in and perform interactive tasks
 - PBS Mom nodes run and managing PBS batch scripts
 - Service Database node (SDB) holds system configuration information
 - LNET Routers connect to the external filesystem.

There are usually many more compute than service nodes

Connecting nodes together: Aries

COMPUTE

Obviously, to function as a single supercomputer, the individual nodes must have method to communicate with

each other.

All nodes in the interconnected by the high speed, low **latency Cray Aries** Network.

Interacting with the system

Users do not log directly into the system. Instead they run commands via an esLogin server. This server will relay commands and information via a service node referred to as a "Gateway node"

Differences between nodes

Service nodes

- This is the node you access when you first log in to the system.
- They run a full version of the **CLE** operating system (all libraries and tools available)
- They are used for editing files, compiling code, submitting jobs to the batch queue and other interactive tasks.
- They are shared resources that may be used concurrently by multiple users.
- There may be many service nodes in any Cray XC30 and can be used for various system services (login nodes, IO routers, daemon servers).

Compute nodes

- These are the nodes on which production jobs are executed
- They run Compute Node Linux, a version of the OS optimised for running batch workloads
- They can only be accessed by submitting jobs through a batch management system (e.g. PBS Pro, Moab, SLURM)
- They are exclusive resources that may only be used by a single user.
- There are many more compute nodes in any Cray XC30 than login or service nodes.

EXCEPTION: When is a compute node not a compute node?

- When it is a MAMU Node.
- Some customers call these pre-/post- processing or shared nodes
- These are compute nodes running the full Cray Linux Environment operating system.
- Used for sharing hardware between jobs/users running on less than a whole node.
 - i.e. serial jobs, small parallel jobs
- Essentially looks like a service node using compute node hardware.
- Accessible via PBS setup

Further Node Terms

- Users cannot interact with these nodes directly
- SMW System Management Workstation
 - Used by system administrators to perform system tasks.
- RSIP Nodes Realm-Specific IP Nodes
 - Service nodes that provide connectivity to external networks
- Boot Node
- SDB Node System Data Base

COMPUTE

XC Architecture and Packaging

COMPUTE | STORE | ANALYZE

Cray XC System Building Blocks

Rank 1 Network

16 Compute

Blades

No Cables

64 Compute **Nodes**

Group

Rank 2 Network

Passive Electrical Network

2 Cabinets

6 Chassis

384 Compute Nodes

System

Rank 3 Network

Active Optical Network

Hundreds of Cabinets

Up to 10s of thousands of nodes

4 Compute **Nodes**

Cray XC40 Intel® Xeon® Compute Node

The XC40 Compute node features:

- 2 x Intel® Xeon® Sockets/die
 - 18 core Broadwell
 - QPI interconnect
 - Forms 2 NUMA nodes
- 8 x 2400MHz DDR4
 - 16 GB per Channel
 - 128 GB total
- 1 x Aries NIC
 - Connects to shared Aries router and wider network
 - PCI-e 3.0

Broadwell CPU

- CRAY
- Intel Advanced Vector Extensions 2 (AVX2)
 - 256-bit integer vectors
 - Fused Multiply-Add (FMA)
 - Full-width element permutes
 - Gather

2x cache bandwidth

- 32-byte load/store for L1
- 2x L2-to-L1 bandwidth

	Broadwell
Instruction set	AVX2 & FMA
DP Flop / cycle	16
L1 Data cache	32kB 8-way
Load BW	64 B/cycle
Store BW	32 B/cycle
L2 Unified cache	256 kB 8-way
BW to L1	64 B/cycle

Cray XC40 Compute Node Architecture

4 Channels

DDR3

COMPUTE

STORE

ANALYZE

Cray XC Fully Populated Compute Blade

SPECIFICATIONS

Module power: 2014 Watts

PDC max. power: 900 Watt

Air flow req.: 275 cfm (7.8 m³/min)

Size: 2.125 in x 12.95 in x 33.5 in

Weight: <40 lbm (18 kg)

PDC's (Processor Daughter Card) are Upgradeable to New Technology

Cray XC Quad Processor Daughter Card

Aries and the Dragonfly topology

Cray XC Network

 The Cray XC system is built around the idea of optimizing interconnect bandwidth and associated cost at every level

Rank-2
Passive CU: \$

Rank-3
Active Optics: \$\$\$\$

Cray XC Packaging Review

Rank-1 Chassis Rank-2 2 Cabinet Group Rank-3
Between Groups

Aries

- Aries is the Cray custom interconnect ASIC used in the Cray XC product family
 - 40nm process
 - Die size: 16.6 x 18.9mm
 - Gate count: 217M
 - 184 lanes of high speed SerDes
 - SerDes=Serializer/Deserializer (SerDes pronounced sir-deez)
 - 30 optical network lanes
 - 90 electrical network lanes
 - 64 PCI Express lanes

4 NICs

Each Aries connects 4 nodes to the interconnect (Gemini connects 2)

Cray XC Rank1 Network

- Chassis with 16 compute blades
- o 128 Sockets
- Inter-Aries communication over backplane
- Per-Packet adaptive Routing

Cray XC Rank-2 Copper Network

2 Cabinet Group 768 Sockets

6 backplanes connected with copper cables in a 2cabinet group: "Black Network"

Active optical cables interconnect groups
"Blue Network"

Cray XC Routing

Minimal routes between any two nodes in a group are just two hops

Non-minimal route requires four hops.

With adaptive routing we select between minimal and nonminimal paths based on load

The Cray XC Class-2 Group has sufficient bandwidth to support full injection rate for all 384 nodes with nonminimal routing

COMPUTE | STORE | ANALYZE

Cray XC40 Rank-2 Cabling

- Cray XC30 two-cabinet group
 - 768 Sockets
 - 96 Aries Chips
- All copper and backplanes signals running at 14 Gbps

COMPUTE | STORE

Aries Adaptive Routing Algorithm Round trip time Load information Local output from neighbours, queue depth communicated on every 10 cycles Load metrics (per port) Route tables (per port) Global Global minimal non-minimal Local Local non-minimal minimal Choice of 4 possible routes, Compare current loads 2 minimal and 2 nonfor each of the 4 possible minimal. A new selection is outputs, select the best

made for every packet

Packet

data

hdr

COMPUTE

STORE

data

hdr

Output packet on selected port

Cray XC Network Overview – Rank-3 Network

- An all-to-all pattern is wired between the groups using optical cables (blue network)
- Up to 240 ports are available per 2cabinet group
- The global bandwidth can be tuned by varying the number of optical cables in the group-to-group connections

Example: A 4-group system is interconnected with 6 optical "bundles". The "bundles" can be configured between 20 and 80 cables wide

Optical network saturation using the OSU MPI BM This runs were done on Hornet (HLRS) with the 25% opt. cables config

• Saturating the optical network using communications between more and more

Bandwidth Saturation of fiber optics cable

nodes within 2 groups:

2x300 nodes: 875 GB/s

Dragonfly is placement insensitive

- Example: Sandia miniApp, miniGhost
- Running on 2256 node (12 Cabinets) CSCS system (¼ global bandwidth)
 - Runtime in seconds for 100 cycles

Blocks of 512 nodes 69.0 68.8 68.9 68.9

Perfect Placement

Random blocks of 64 nodes 69.4 69.4 69.4 69.5

< 3% variance from best-case to worst-case placement

Random layout of nodes 70.9 71.0 70.6 70.5

Worst-Case Placement

Does Aries handle MPI Traffic with I/O Traffic?

I/O Messages

COMPUTE

MPI Messages

Mix of application and streaming I/O traffic

- CRAY
- Analysis of the impact of big I/O traffic on performance of other codes
- Compared two runs
 - 1. Four miniGhost jobs spread out across the whole machine vs.
 - 2. Three miniGhost plus one performing big many-to-few I/O

I/O Job sustaining 400GB/sec (95% clients to 5% servers)

Impact to compute jobs is tiny (64.5 sec to 65 sec)

Why is the Dragonfly topology a good idea?

Scalability

Topology scales to very large systems

Performance

- More than just a case of clever wiring, this topology leverages state-of-the-art adaptive routing that Cray developed with Stanford University
- Smoothly mixes small and large messages
- Cray invested in bringing it to market IBM and Mellanox have not

Simplicity

- Implemented without external switches
- No HBAs or separate NICs and Routers

Cost

- Dragonfly maximizes the use of backplanes and passive copper components
- Dragonfly minimizes the use of active optical components

ANALYZE

XC Cooling

XC Cooling Overview

Cray XC Transverse Cooling Advantages

Performance

 Transverse cooling and graduated heat sink pitch ensure that all processors operate in the same thermal envelope

"Turbo mode" works like it should in a parallel job

Simplicity

- No airflow issues to manage or adjust
- System is 100% water-cooled
- No pumps, refrigerant, treated water, or plumbing on the blades

Cost of Ownership

- Excellent PUE characteristics
- 25% better density than other 'direct' water cooled solution
- All cooling infrastructure is retained across multiple generations of computing technology

Maintainability

- Blades can be warm-swapped without disturbing any plumbing
- Blowers can be hot-swapped if required and can provide N+1

Storage

Sonexion: Only Three Components

Fully integrated metadata module

- Lustre Metadata software
- Metadata disk storage
- Dual redundant management servers
- Metadata storage target RAID

SSU: Scalable Storage Unit

Fully integrated storage module

- Storage controller, Lustre server
- Disk controller, RAID engine
- High speed storage
- Provides both capacity and performance

Fully prepared rack

- Prewired for InfiniBand, Ethernet and power
- Ready for instant expansion

3

Programming Environment

Vision

- Cray systems are designed to be High Productivity as well as High Performance Computers
- The Cray Programming Environment (PE) provides a simple consistent interface to users and developers.
 - Focus on improving scalability and reducing complexity
- The default Programming Environment provides:
 - the highest levels of application performance
 - a rich variety of commonly used tools and libraries
 - a consistent interface to multiple compilers and libraries
 - an increased automation of routine tasks
- Cray continues to develop and refine the PE
 - Frequent communication and feedback to/from users
 - Strong collaborations with third-party developers

Cray XC: Focus on User Productivity

No Code Development **New** Code Development

Cray XC provides great support across the full spectrum of HPC user types

Cray Software Ecosystem

Cray's Supported Programming Environment

Fortran

C

C++

Python

Programming models

Distributed Memory (Cray MPT)

- MPI
- SHMEM

Shared Memory

- OpenMP 3.1
- OpenACC

PGAS & Global View

- UPC (CCE)
- · CAF (CCE)
- Chapel

Compilers

Cray Compiling Environment (CCE)

3rd Party Compilers

- Intel Composer
- PGI

Tools

Environment setup

Modules

Debuggers

Allinea (DDT)

lgdb

ccgdb

Debugging Support Tools

Abnormal Termination Processing

STAT

Performance Analysis

CrayPat

 Cray Apprentice²

Scoping Analysis

Reveal

Optimized Scientific Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative Refinement Toolkit

FFTW

Cray PETSc (with CASK)

Cray Trilinos (with CASK)

I/O Libraries

NetCDF

HDF5

Cray developed
Licensed ISV SW

3rd party packaging

Cray added value to 3rd party

The Cray Compilation Environment (CCE)

- The default compiler on XE and XC systems
 - Specifically designed for HPC applications
 - Takes advantage of Cray's experience with automatic vectorization and and shared memory parallelization
- Excellent standards support for multiple languages and programming models
 - Fortran 2008 standards compliant
 - C++98/2003 compliant (working on C++11)
 - OpenMP 3.1 compliant, working on OpenMP 4.0
 - OpenACC 2.0 compliant
- Full integrated and optimised support for PGAS languages
 - UPC 1.2 and Fortran 2008 coarray support
 - No preprocessor involved
 - Full debugger support (With Allinea DDT)
- OpenMP and automatic multithreading fully integrated
 - Share the same runtime and resource pool
 - Aggressive loop restructuring and scalar optimization done in the presence of OpenMP
 - Consistent interface for managing OpenMP and automatic multithreading

Cray MPI & SHMEM

Cray MPI

- Implementation based on MPICH3 source from ANL
- Includes many improved algorithms and tweaks for Cray hardware
 - Improved algorithms for many collectives
 - Asynchronous progress engine allows overlap of computation and comms
 - Customizable collective buffering when using MPI-IO
 - Optimized Remote Memory Access (one-sided) fully supported including passive RMA
- Full MPI-3 support with the exception of
 - Dynamic process management (eg. MPI_Comm_spawn)
 - MPI_LONG_DOUBLE and MPI_C_LONG_DOUBLE_COMPLEX for CCE
- Includes support for Fortran 2008 bindings (from CCE 8.3.3)

Cray SHMEM

- Fully optimized Cray SHMEM library supported
 - Fully compliant with OpenSHMEM v1.0
 - Cray XC implementation close to the T3E model

Cray Scientific Libraries

IRT – Iterative Refinement Toolkit

CASK – Cray Adaptive Sparse Kernels

CASE – Cray Adaptive Simplified Eigensolver

Cray Performance Analysis Tools (PAT)

- From performance measurement to performance analysis
- Assist the user with application performance analysis and optimization
 - Help user identify important and meaningful information from potentially massive data sets
 - Help user identify problem areas instead of just reporting data
 - Bring optimization knowledge to a wider set of users
- Focus on ease of use and intuitive user interfaces
 - Automatic program instrumentation
 - Automatic analysis
- Target scalability issues in all areas of tool development

Debuggers on Cray Systems

- Systems with hundreds of thousands of threads of execution need a new debugging paradigm
 - Innovative techniques for productivity and scalability
 - Scalable Solutions based on MRNet from University of Wisconsin
 - STAT Stack Trace Analysis Tool
 - Scalable generation of a single, merged, stack backtrace tree
 - running at 216K back-end processes
 - ATP Abnormal Termination Processing
 - Scalable analysis of a sick application, delivering a STAT tree and a minimal, comprehensive, core file set.
 - Fast Track Debugging
 - Debugging optimized applications
 - Added to Allinea's DDT 2.6 (June 2010)
 - Comparative debugging
 - A data-centric paradigm instead of the traditional control-centric paradigm
 - Collaboration with Monash University and University of Wisconsin for scalability
 - Support for traditional debugging mechanism
 - TotalView, DDT, and gdb