
Batch environment on cca/ccb - PBS

Dominique Lucas

User Support

Some slides courtesy of Cray

Batch job submission – PBS © ECMWF 2017 1

 PBS basics

- Queues, commands, directives, jobs, …

- Sequential jobs

- Tutorial 1

 Parallel Job submission

- ECMWF local PBS directives

- Fractional and parallel jobs

- Tutorial 2

 Advanced job submission

- CPU/thread binding

- Tutorial 3

Agenda

Batch job submission – PBS © ECMWF 2017 2

Phase II

Sustained Performance (teraflops) 320

Peak performance (teraflops) ~8,500

Processor technology Intel Broadwell

Parallel application nodes 3,513

MOM nodes 10

Pre/Post-processing nodes 104

Cores per node 36

Memory per node (GiB) 128 (2400 MHz DDR4)

External login nodes 2 x Ivy Bridge, 1 x

Haswell

Clock frequency (GHz) 2.1

Storage capacity (petabytes) 20

Floating Point Instruction set AVX2

Default compiler Cray 8.4.x

Batch job submission – PBS © ECMWF 2017 3

Cray XC40 specifications

By default, users do not log in and run applications on the compute nodes directly.

Instead they launch batch jobs using the following nodes:

 Pre and Post Processing (PPN)

- Used for serial jobs

- Used for small parallel jobs requiring less than half a node

 MOM

- Where the parallel job scripts run

- Need to minimise the serial content of such scripts

 Extreme Scalability Mode (ESM) - Compute Nodes (CN)

- Where the full (multi) node parallel executables run

- Accessed via the command ‘aprun’ (equivalent of mpirun, mpiexec, …) from the MOM node

Different User node types for batch work on Cray XC40

Batch job submission – PBS © ECMWF 2017 4

PBS nodes (commands run on cca)

 pbsnodes –a | less

ccamom05 # this is a MOM node

 ntype = PBS

 jobs = 1036567.ccapar/0, 1036565.ccapar/0, 1036364.ccapar/0. …

 resources_available.EC_accept_from_queue = np,dp,tp

 resources_available.vntype = cray_login

ccappn007 # this is a pre/post processing node (PPN)

 jobs = 1036445.ccapar/1, 1035396.ccapar/2, 1036450.ccapar/3, ...

 resources_available.EC_accept_from_queue = os,ts,ns,of,tf,nf,df,ds

 resources_available.vntype = cray_postproc

cca_2140_0 # this is (half) a Compute node (CN)

 resources_available.EC_accept_from_queue = np,tp,op, dp

 resources_available.vntype = cray_compute

 apstat | less

Compute node summary

 arch config up resv use avail down

 XT 3510 3510 3390 3333 120 0

 Batch job submission – PBS © ECMWF 2017 5

Batch queues on Crays XC40

User

Queue

Name

Suitable for Target

nodes

Number of

processes

min/max

Shared

/

not shared

Processes per

node available

for user jobs

ns serial PPN 1/1 shared 72

nf fractional PPN 2/36 shared 72

np parallel MOM+CN 1/72 not shared 72

Batch job submission – PBS © ECMWF 2017 6

 Similar queues for time critical (option 2) work: ts, tf, tp.

 Debug queues are also available: ds, df and dp.

 ‘ qstat –Q –f <queue_name> ’ gives full details on specified queue

 Main User commands:

 (*) ECMWF local commands.

 See man pages for more details.

PBS basics

User Commands PBS

Job submission qsub [options] <script>

Job cancel qdel <job_id>

Job status qstat [options] [job_id]

qscan*

Queue list qstat –Q [-f] [queue]

Check job output qcat*

Batch job submission – PBS © ECMWF 2017 7

Requesting resources from PBS

Jobs provide a list of requirements as #PBS comments in the headers of the submission script, e.g.

 #PBS –l walltime 12:00:00

These can be overridden or supplemented at submission by adding to the qsub command line, e.g.

 > qsub –l walltime 11:59:59 run.pbs

Common options are:

Jobs must also describe how many compute nodes they will need.

Option Description

-N <name> A name for job,

-q <queue> Submit job to a specific queues.

-o <output file> A file to write the job’s stdout stream in to.

-e <error file> A file to write the job’s stderr stream in to.

-j oe Join stderr stream in to stdout stream as a single file

-l walltime <HH:MM:SS> Maximum wall time job will occupy

Batch job submission – PBS © ECMWF 2017 8

Submitting jobs to the batch system

 Job scripts are submitted to the batch system with qsub:

- qsub script.pbs

 Once a job is submitted, it is assigned a PBS Job ID, e.g.

- 1842232.ccapar

 To view the state of all the currently queued and running jobs run:

- qstat

 To limit to just jobs owned by a specific user

- qstat –u <username>

 To see details about one job

- qstat –f <job id>

 To remove a job from the queue, or cancel a running job

- qdel <job id>

Batch job submission – PBS © ECMWF 2017 9

 Normal queues:

- User jobs run limit: 20 jobs per queue

- Time limit: 2 days

- Memory limit:

 In queue np: all the memory available (~120GB/node)

 In queues ns and nf, no memory limits enforced yet. Try to specify the

limit you need.

 Time critical queues:

- Varying user jobs run limits

- Shorter time limits

 See ‘qstat –Q –f <queue name>’

Some queue limits

Batch job submission – PBS © ECMWF 2017 10

 ksh and bash shells are supported with PBS

 The ECMWF command ‘eoj’ (end of job) is available and included at the end of each job output

file.

- The resource usage reported in ‘eoj’ is only correct for queues ‘ns’ and ‘nf’. For ‘np’, only

resources spent on the MOM node are reported in ‘eoj’. See aprun final report line for the

usage of parallel resources.

 Job accounting is running for PBS:

- All jobs will be charged for elapsed time times the number of cores utilised

- The accounting currency is the SBU, for System Billing Unit

- 1 core*hour =16.11 SBUs

Shells and accounting.

Batch job submission – PBS © ECMWF 2017 11

 ‘Interactive batch’ sessions:

 From remote (non ECMWF) systems, via ECaccess, to start GUI applications:

Interactive PBS access – remote X11 in PBS

Batch job submission – PBS © ECMWF 2017 12

 qsub -I -q np -l EC_nodes=1-X

qsub: waiting for job 9848342.ccbpar to start …

qsub: job 9848342.ccbpar ready

...

ccbmom06:> aprun …

 echo $DISPLAY $X11PROTOCOL $X11COOKIE

136.156.66.24:0.0 MIT-MAGIC-COOKIE-1 3ce0e9a973020f4fe559dd7d108c5195

 qsub -I -q np -l EC_nodes=1 -X

qsub: waiting for job 9848342.ccbpar to start …

qsub: job 9848342.ccbpar ready

...

ccbmom06:> xauth add 136.156.66.24:0.0 MIT-MAGIC-COOKIE-1 3ce0e9a973020f4fe559dd7d108c5195

ccbmom06:> xclock

PBS at ECMWF - some numbers

 Number of jobs per day per cluster: 250k to 300k

 Sequential jobs: 50%

 Fractional jobs: 25%

 Parallel jobs: 25%

 Average length of jobs: 250 seconds

 Sequential jobs: 150s

 Fractional jobs: 85s

 Parallel jobs: 600s

 Total cost per day per cluster: 45-50M SBUs

 Sequential jobs: 0.11%

 Fractional jobs: 0.14%

 Parallel jobs: 99.74%

 Occupation of // nodes:

 Operational cluster: 85%

 Non operational cluster: 98.25%

Batch job submission – PBS © ECMWF 2017 13

Pre/Post Processing Mode – queues ns, ds, ts

 Designed to allow multi-user jobs to share compute nodes

- More efficient for apps running on less than one node

- Possible interference from other users on the node

 Uses the same fully featured OS as service nodes

 Multiple use cases, applications can be:

- entirely serial

- shared memory using OpenMP or other threading model.

- MPI (limited to intra-node MPI only)

Batch job submission – PBS © ECMWF 2017 14

ECMWF job example 1 – sequential job

 cat small_job.cmd

..

#PBS -N Hello_S

#PBS -q ns

…

cd $SCRATCH

mars req

…

Batch job submission – PBS © ECMWF 2017 15

Tutorial 1 – on ccb:

 cd $PERM

 tar xvf ~trx/pbs.tar

 cd pbs/intro

Batch job submission – PBS © ECMWF 2017 16

 Follow instructions in the README file.

 Commands covered:

- pbsnodes

- qstat

- qsub

- qcat

- eoj

 See man pages or ‘qcat –h’, ‘eoj –h’ for further help.

Extreme Scaling Mode (ESM) – queues np, dp, tp.

ESM is a high performance mode designed to run larger applications at scale. Important features are:

 Dedicated compute nodes for each user job

- No interference from other users sharing the node

- Minimum quanta of compute is 1 node.

 The appropriate parallel runtime environment is automatically set up between nodes

ESM is expected to be the default mode for the majority of applications that require at least one node to run.

Batch job submission – PBS © ECMWF 2017 17

Glossary of terms

To understand how many compute nodes a job needs, we need to understand how parallel jobs are described .

PE/Processing Element

 A discrete software process with an individual address space. One PE is equivalent to:

1 MPI Rank or task, 1 Co-array Image, 1 UPC Thread, or 1 SHMEM PE

Threads

 A logically separated stream of execution inside a parent PE that shares the same address space

CPU

 The minimum piece of hardware capable of running a PE. It may share some or all of its hardware resources with other

CPUs.

Equivalent to a single “Intel Hyperthread”. May also be referred to as ‘Logical CPU’

Compute Unit

 The individual unit of hardware for processing, may be seen described as a “core”. May provide one or more CPUs. May

also be referred to as ‘Physical CPU’.

Batch job submission – PBS © ECMWF 2017 18

Requesting resources from a batch system

 ECMWF Cray XC40s use PBS to schedule resources

- Users submit batch job scripts to a scheduler from a login node (e.g. PBS) for execution at some point in the future.

Each job requests resources and predicts how long it will run.

- The scheduler (running on an external server) then chooses which jobs to run and when, allocating appropriate

resources at the start.

- The batch system will then execute a copy of the user’s job script on an a one of the “MOM” nodes.

- The scheduler monitors the job throughout it lifetime. Reclaiming the resources when job scripts finish or are killed

for overrunning.

 Each user job script will contain two types of commands

1. Serial commands that are executed by the MOM node, e.g.

 quick setup and post processing commands e.g. (rm, cd, mkdir etc)

2. Parallel launches to run on the allocated compute nodes.

 Launched using the ‘aprun’ command.

Batch job submission – PBS © ECMWF 2017 19

ECMWF PBS Job Directives

 ECMWF have created a bespoke set of job directives for PBS that can be used to define the job core requirements.

 The ECMWF job directives provide a direct map between aprun options and PBS jobs.

 There are more ‘EC_’ directives.

 The PBS prolog will define variables in the job with the same as the names for the ‘EC_’ directives.

Description aprun Option EC Job Directive Default

Total Pes -n <n> #PBS –l EC_total_tasks=<n> 1

PEs per node -N <N> #PBS –l EC_tasks_per_node=<N> 36/72

Threads per PE -d <d> #PBS –l EC_threads per_task=<d> 1

CPUs per CU -j <j> #PBS –l EC_hyperthreads=<j> 1

Batch job submission – PBS © ECMWF 2017 20

Launching ESM Parallel applications

 ALPS : Application Level Placement Scheduler

 aprun is the ALPS application launcher

- It must be used to run application on the XC compute nodes in ESM mode, (either interactively or as a batch

job)

- If aprun is not used, the application will be run on the MOM node (and will most likely fail).

- aprun launches sets of PEs on the compute nodes.

- The aprun man page contains several useful examples

- The 4 most important parameters to set are:

Description Option

Total Number of PEs used by the application -n

Number of PEs per compute node -N

Number of threads per PE

(More precise, the “stride” between 2 PEs on a node)

-d

Number of to CPUs to use per Compute Unit -j

Batch job submission – PBS © ECMWF 2017 21

 Tight schedule, huge resources needed at short notice

 Three options:

- Exclusive HPC resources for operational work

- Sharing of HPC resources with default scheduling of batch work

- Sharing of resources with enhanced scheduling of batch work

ECMWF operational work

Batch job submission – PBS © ECMWF 2017 22

 Usage of PBS job reservation system.

 For this, we need a precise description of the jobs, including runtime and node requirements.

 The ECMWF PBS filter will set the node requirements and assign an estimated runtime for each job, to

guarantee an optimal usage of the resources and a timely delivery of the operational data.

 A jobs runtime database keeps the wall clock time of the last 20 runs for not more than 30 days.

 To benefit from database and scheduling:

- Keep job name and output file name identical for the same jobs.

ECMWF’s enhanced scheduling

Batch job submission – PBS © ECMWF 2017 23

 Users want something ‘simple’ to write their jobs

 The node requirements and job geometry for a job in PBS are specified with a ‘select’ statement (#PBS –l

select=..’).

 This statement is quite complex to use and doesn’t cover all the requirements needed for the ECMWF enhanced

scheduling.

 Another complication with PBS is that the user will have to redefine the geometry of his/her run in the script (with

‘aprun’).

 At ECMWF, we have therefore decided to customise the PBS environment.

- Users cannot write their own ‘select’ statement.

- ECMWF PBS directives (#PBS –l EC_*) are available to define the job geometry.

- Environmental variables defining the job geometry are available in the job script.

PBS User perspective – ECMWF filter

Batch job submission – PBS © ECMWF 2017 24

ECMWF job example 2 – DIY (do it yourself) option

 cat HelloMPIandOpenMP.cmd

..

#PBS -N HelloMPI_OMP

#PBS -q np

#PBS -l EC_nodes=3

…

export OMP_NUM_THREADS=6

aprun -n 36 –N 36 -d 6 -j 2 HelloMPI_OMP

 qsub HelloMPIandOpenMP.cmd

124950.ccbpar

 qstat –f 124950.ccbpar

…

Resource_List.select=1:vntype=cray_login:EC_accept_from_queue=np:ncpus=0:mem=300MB+3:

vntype=cray_compute:EC_accept_from_queue=np:mem=120GB

Batch job submission – PBS © ECMWF 2017 25

Note the limited memory assigned on the MOM node!

ECMWF job example 3 – Flexible option

 cat HelloMPIandOpenMP.cmd

..

#PBS -N HelloMPI_OMP

#PBS -q np

#PBS -l EC_total_tasks=36

#PBS -l EC_threads_per_task=6

#PBS -l EC_memory_per_task=12GB

#PBS -l EC_hyperthreads=2

…

export OMP_NUM_THREADS=$EC_threads_per_task

aprun -N $EC_tasks_per_node -n $EC_total_tasks \

-d $EC_threads_per_task -j $EC_hyperthreads ./HelloMPI_OMP

…

 qstat –f <job_id>

Resource_List.select=select=1:vntype=cray_login:EC_accept_from_queue=np:ncpus=0:mem=3

00MB+4:vntype=cray_compute:EC_accept_from_queue=np:mem=115964116992

Batch job submission – PBS © ECMWF 2017 26

ECMWF job example 4 – MPMD programs, e.g. coupled runs

 cat MPMD.cmd

..

#PBS -N HelloMPMD

#PBS -q np

#PBS -l EC_total_tasks=30:6

#PBS -l EC_threads_per_task=1:1

#PBS -l EC_hyperthreads=1

…

IFS=‘:’

tasks_per_node=($EC_tasks_per_node)

total_tasks=($EC_total_tasks)

aprun -n ${total_tasks[0]} –N ${tasks_per_node[0]} ./model_atm : \

 -n ${total_tasks[1]} –N ${tasks_per_node[1]} ./model_ocean

…

Batch job submission – PBS © ECMWF 2017 27

With this method, one cannot run two different executables on the same node,

therefore we may be wasting compute resources.

ECMWF job example 5 – MPMD programs, improved recipe

 cat MPMD_turbo.cmd

..

#PBS -N HelloMPMD

#PBS -q np

#PBS -l EC_nodes=1

cat>wrapper.sh<<eof

#!/bin/ksh

rank=$EC_FARM_ID

export OMP_NUM_THREADS=1

if [$rank -lt 30]; then

 exec ./atm>atm.out.$rank 2>&1

else

 exec ./ocean>ocean.out.$rank 2>&1

fi

eof

Batch job submission – PBS © ECMWF 2017 28

https://cug.org/proceedings/cug2014_proceedings/includes/files/pap136.pdf for more details.

No waste of CPU resources!

export PMI_NO_FORK=1

this variable is essential

aprun –n36 –N36 -j1 ./wrapper.sh

$EC_FARM_ID is defined for

you for each entity of the

wrapper.sh script running.

https://cug.org/proceedings/cug2014_proceedings/includes/files/pap136.pdf

Running applications on the Cray XC40:

Some basic examples

Assuming XC40 nodes with 2x18 core Ivybridge processors

- Each node has: 72 CPUs/Hyperthreads and 36 Compute Units/cores

 Launching an MPI application on all CPUs of 64 nodes:

- Using 1 CPU per Compute Unit means a maximum of 36 PEs per node.

- 64 nodes x 36 ranks/node = 2304 ranks

 $ aprun –n 2304 –N 36 –j 1 ./model-mpi.exe

 Launch the same MPI application on 64 nodes but with half as many ranks per node

- Still using 1 CPU per Compute Unit, but limiting to 18 Compute Units.

 $ aprun –n 1152 –N 18 –j 1 ./model-mpi.exe

 Doubles the available memory for each PE on the node

 To use all availble CPUs on 64 nodes.

- Using 2 CPUs per Compute unit, so 72 PEs per node

 $ aprun –n 4608 –N 72 –j 2 ./model-mpi.exe

 Batch job submission – PBS © ECMWF 2017 29

Some examples of hybrid invocation

 To launch a Hybrid MPI/OpenMP application on 64 nodes

- 384 total ranks, using 1 CPU per Compute Unit (Max 36 Threads)

- Use 6 PEs per node and 6 Threads per PE

- Threads set by exporting OMP_NUM_THREADS

 $ export OMP_NUM_THREADS=6

 $ aprun –n 384 –N 6 –d $OMP_NUM_THREADS –j 1 ./model-hybrid.exe

 Launch the same hybrid application with 2 CPUs per CU

- Still 384 total ranks, using 2 CPUs per Compute Unit (Max 72 Threads)

- Use 6 PEs per node and 12 Threads per PE

 $ export OMP_NUM_THREADS=12

 $ aprun –n 384 –N 6 –d $OMP_NUM_THREADS –j 2 ./model-hybrid.exe

Batch job submission – PBS © ECMWF 2017 30

Watching a launched job on the Cray XE

 xtnodestat

- Shows how ESM nodes are allocated and corresponding aprun commands

 apstat

- Shows aprun processes status

- apstat overview

- apstat –a [apid] info about all the applications or a specific one

- apstat –n info about the status of all the nodes

- apstat –a –v [apid] more detailed info about all applications (or a specific one), including PBS job ID.

 qstat

- shows batch jobs or queues

Batch job submission – PBS © ECMWF 2017 31

Pre/Post Processing Mode – queues nf, df, tf

 Designed to allow multi-user jobs to share compute nodes

- More efficient for apps running on less than one node

- Possible interference from other users on the node

 Uses the same fully featured OS as service nodes

 Multiple use cases, applications can be:

- entirely serial

- shared memory using OpenMP or other threading model.

- MPI (limited to intra-node MPI)

Batch job submission – PBS © ECMWF 2017 32

ECMWF job example 6 – fractional job

 cat small_job.cmd

..

#PBS -N HelloMPI_S

#PBS -q nf

#PBS -l EC_total_tasks=18

#PBS -l EC_hyperthreads=2

…

module load cray-snplauncher

mpiexec -n $EC_total_tasks ./HelloMPI_S

…

Batch job submission – PBS © ECMWF 2017 33

 Typical 3-steps job, with dependencies:

Alternatives are to:

- DIY: submit subsequent job at the end of current job.

- use the ‘qsub –W depend’ option

- use ‘qsub –W block=true’ option

- use a scheduling system, e.g. ECMWF’s ecFlow software.

How to manage dependencies between jobs

fetch data - serial

model run - parallel

post processing - serial

Batch job submission – PBS © ECMWF 2017 34

Tutorial 2 – on ccb:

 cd $PERM/pbs/parallel

Batch job submission – PBS © ECMWF 2017 35

 Follow instructions in the README file. You will submit fractional and parallel jobs.

 Commands covered:

- xtnodestat

- apstat

- mpiexec

- aprun

- qsub, qstat, maybe qdel …

 See relevant man pages. For the ECMWF PBS EC_* directives, see under

https://software.ecmwf.int/wiki/display/UDOC/EC_+Job+Directives+Summary

https://software.ecmwf.int/wiki/display/UDOC/EC_+Job+Directives+Summary
https://software.ecmwf.int/wiki/display/UDOC/EC_+Job+Directives+Summary

Default Binding - CPU

 By default aprun will bind each PE (MPI task or rank) to a single CPU for the duration of the run.

 This prevents PEs moving between CPUs.

 All child processes of the PE are bound to the same CPU

 PEs are assigned to CPUs on the node in increasing order from 0. e.g.

0

0

1

1

2

2

35

35 …
0

36

1

25

2

26

35

71 …

Node 1 Node 0

1 Software PE

is bound to 1

Hardware CPU
aprun –n 72 –N 36 –j1 a.out

Batch job submission – PBS © ECMWF 2017 36

Default Thread Binding (pt 1)

 You can inform aprun how many threads will be created by each PE by passing arguments to the –d (depth) flag.

 aprun does not create threads, just the master PE.

 PEs are bound to CPU spaced by the depth argument, e.g

0

0

1 2

1

34

17 …

Node 0

1 Software PE

is bound to

1 Hardware CPU

aprun –n 36 –N 18 –d2 –j1 a.out

35 0

18

1 2

19

34

35 …

Node 1

35

Batch job submission – PBS © ECMWF 2017 37

 Each subsequently created child processes/thread is bound by the OS to the next CPU (modulo by the depth argument).

e.g.

 Each PE becomes the master thread and spawns a new child thread. The OS binds this child thread to the next CPU.

Default Thread Binding (pt 2)

0

0.0

1 2

1.0

34

17.0 …

Node 0

OMP_NUM_THREADS=2
aprun –n 36 –N 18 –d2 –j1 a.out

35 0 1 2 34
…

Node 1

35

0.1 17.1 18.0 18.1 35.0 35.1 19.0

Batch job submission – PBS © ECMWF 2017 38

 aprun cannot prevent PEs from spawning more threads than requested

 In such cases threads will start to “wrap around” and be assigned to earlier CPUs.

 E.g.:

 In this case, the third thread is assigned to the same CPU as the master PE causing contention for resources.

Default Thread Binding (pt 3)

0

0.0

1 2

1.0

34

11.0 …

Node 0

OMP_NUM_THREADS=3
aprun –n 36 –N 18 –d2 –j1 a.out

35 0 1 2 34
…

Node 1

35

0.1 17.1 12.0 18.1 23.0 35.1 13.0
0.2 1.2 17.2 18.2 19.2 35.2

Batch job submission – PBS © ECMWF 2017 39

 aprun can be prevented from binding PEs and their children to CPUs, by specifying “–cc none”. E.g.:

 All PEs and their child processes and threads are allowed to migrate across cores as determined by the standard Linux

process scheduler.

 This is useful where PEs spawn many short lived children (e.g. compilation scripts) or over-subscribe the node.

 (-d removed as it no longer serves a purpose)

Removing binding entirely

0 1 2 34
…

Node 0

OMP_NUM_THREADS=3
aprun –n 36 –N 18 –-cc none –j1 a.out

35 0 1 2 34
…

Node 1

35

0.0-17.2

…
18.0-35.2

Batch job submission – PBS © ECMWF 2017 40

Cray XC Compute Node

NUMA Node 1 NUMA Node 0

NUMA Nodes

The design of the XC node means that CPUs

accessing data stored on the other socket/die have to

cross the QPI inter-processor bus

This is marginally slower than accessing local

memory and creates “Non-Uniform Memory

Access” (NUMA) regions.

Each XC node is divided into two NUMA nodes,

associated with the two sockets/dies.

Intel®

Broadwell®

18 Core die

Aries

Router

Intel®

Broadwell®

18 Core die

Aries NIC

64 GB 64 GB

PCIe 3.0

Aries

Network

QPI

DDR4

Batch job submission – PBS © ECMWF 2017 41

NUMA nodes and CPU binding (pt 1)

 Care has to be taken when under-populating node (running fewer PEs than available CPUs). E.g.

 The default binding will bind all PEs to CPUs in the first NUMA node of each node.

 This will unnecessarily push all memory traffic through only one die’s memory controller. Artificially limiting memory

bandwidth.

0

0

17
…

Node 0

17

NUMA Node 0

18 35
…

NUMA Node 1

0

18

17
…

Node 1

35

NUMA Node 0

18 35
…

NUMA Node 1

aprun –n 36 –N 18 –j1 a.out

Batch job submission – PBS © ECMWF 2017 42

NUMA nodes and CPU binding (pt 2)

 The -S <PEs> flag tells aprun to distribute that many PEs to each NUMA node, thus evening the load.

 PEs will be assigned to CPUs in the NUMA node in the standard order, e.g. 0-8 ,9-17, 18-26 and 27-35. However all

CPUs within a NUMA node are essentially identical so there are no additional imbalance problems.

0

0

17
…

Node 0

NUMA Node 0

18 35
…

NUMA Node 1

0

18

17
…

Node 1

NUMA Node 0

18 35
…

NUMA Node 1

aprun –n 36 –N 18 –S 9 –j1 a.out

9 27

Batch job submission – PBS © ECMWF 2017 43

Binding to NUMA nodes

 As well as completely removing binding, it is also possible to make aprun bind PEs to all the CPUs on a NUMA node.

 PEs will be assigned to the NUMA node that their original PE would have been assigned to with CPU binding and the

same options.

 OS allowed to migrate processes within the NUMA node, should be better performance than no binding. “–cc none”

0 17
…

Node 0

NUMA Node 0

18 35
…

NUMA Node 1

0 17
…

Node 1

NUMA Node 0

18 35
…

NUMA Node 1

aprun –n 36 –N 18 –S 9 –j1 –-cc numa_node a.out

0-8 … 9-17 … 18-26 … 27-35

Batch job submission – PBS © ECMWF 2017 44

Binding to a CPU set: -depth

 An extension to “numa_node” is the option -cc depth.

 depth defines that a ‘cpu set’ should be used where all threads belonging to a rank are “unbound”.

The size of the cpu set is given by the –d option

 Solves the ‘Intel Helper Thread’ issue and also the ‘oversubscribing’ of threads.

0 3
…

Node 0

Rank 0

4 7
…

Rank 1

aprun –n 6 –d4 –-cc depth –j1 a.out

0.0-0.3 … 1.0-1.3

20 23
…

Rank 5

… 5.0-5.3 …

Batch job submission – PBS © ECMWF 2017 45

Cray XC Compute Node

NUMA Node 1 NUMA Node 0

Strict Memory Containment

 Each XC node is an shared memory device.

 By default all memory is placed on the NUMA

node of the first CPU to “touch” it.

 However, it may be beneficial to setup strict

memory containment between NUMA nodes.

 This prevents PEs from one NUMA node

allocating memory on another NUMA node.

 This has been shown to improve performance in

some applications.

aprun –ss –n 72 –N 18 –S 9 a.out

Intel®

Broadwell®

18 Core die

Aries

Router

Intel®

Broadwell®

18 Core die

Aries NIC

64 GB 64 GB

PCIe 3.0

Aries

Network

QPI

DDR4

X

Batch job submission – PBS © ECMWF 2017 46

All examples up to now have assumed “-j1” or “Single Stream Mode”.

In this mode, aprun binds PEs and ranks to the 36 Compute Units (e.g. only use CPUs 0-35)

Ignore Hyperthreads; “-j1” Single Stream Mode

36 37 38 39 40 41 42 43

0 1 2 3 4 5 6 7

NUMA Node 0

CPUs 36-71 Ignored

Hyperthread

pair /

Compute

Unit

44

8

…

…

52

16

53

17

54 55 56 57 58 59 60 61

18 19 20 21 22 23 24 25

NUMA Node 1

62

26

…

…

70

34

71

35

Batch job submission – PBS © ECMWF 2017 47

Specifying “-j2” in aprun assigns PEs to all of the 72 CPUs available. However CPUs that share a common

Compute Unit are assigned consecutively

This means threads will share Compute Units with default binding

Include Hyperthreads “-j2” Dual Stream Mode

36 37 38 39 40 41 42 43

0 1 2 3 4 5 6 7

NUMA Node 0

44

8

…

…

52

16

53

17

54 55 56 57 58 59 60 61

18 19 20 21 22 23 24 25

NUMA Node 1

62

26

…

…

70

34

71

35

Hyperthread

pair /

Compute

Unit

Batch job submission – PBS © ECMWF 2017 48

 aprun also allows users to customise the binding of PEs to CPUs.

- Users may pass a colon separated list of CPU binding options to the –cc option.

- The nth PE on the node is bound by the nth binding option.

 Each PE binding option may be either a single CPU or a comma separated list of CPUs.

- Specifying a single CPU forces the PE and all children and threads to the same PE

- Specifying a comma separated list binds the PE to the first CPU in the list and children and threads on to the

subsequent CPUs (round-robin)

- Additional PEs will be left unbound.

Custom Binding

Batch job submission – PBS © ECMWF 2017 49

 Custom binding can be hard to get right. The xthi application is useful for testing binding.

- Source code available in S-2496 (Workload Management and Application Placement for the Cray Linux

Environment) Section 8.7 at docs.cray.com (http://docs.cray.com/books/S-2496-5202/S-2496-5202.pdf)

> export OMP_NUM_THREADS=2

> aprun –n 4 –N 4 –-cc 3,2:7,8:9,10,4:1 xthi | sort

Hello from rank 0, thread 0, on nid00009. (core affinity = 3)

Hello from rank 0, thread 1, on nid00009. (core affinity = 2)

Hello from rank 1, thread 0, on nid00009. (core affinity = 7)

Hello from rank 1, thread 1, on nid00009. (core affinity = 8)

Hello from rank 2, thread 0, on nid00009. (core affinity = 9)

Hello from rank 2, thread 1, on nid00009. (core affinity = 10)

Hello from rank 3, thread 0, on nid00009. (core affinity = 1)

Hello from rank 3, thread 1, on nid00009. (core affinity = 1)

Custom Binding (example)

Batch job submission – PBS © ECMWF 2017 50

Tutorial 3 – on ccb:

 cd $PERM/pbs/binding

Batch job submission – PBS © ECMWF 2017 51

 Follow instructions in the README file. You will look at different ways of binding a parallel application to

the hardware.

 Commands covered:

- aprun

- qsub, qstat, maybe qdel …

 See ‘aprun’ man page.

