Atlas

A Flexible Parallel Framework
for Earth System Modelling

Version 0.8.0

User-Guide

November 22, 2016

ECMWFEF, Shinfield Park, Reading, UK

o=
o=

Introduction

I Getting Started

1 Download and installation

1.1 General requirements
1.2 Installation
1.2.1 External third-party dependencies
1.2.2 ECMWEF third-party dependencies

1.2.3 Atlas installation
1.3 Inspecting your Atlas installation
1.4 Using Atlas in your project
141 CH+version
1.4.2 Fortran version
2 Design
21 Grid ...
22 Mesh
221 Nodes
2.2.2 Elements and Connectivity
2.2.3 Mesh generation
2.3 Field and FieldSet
2.4 FunctionSpace
2.5 Parallelisation
2.6 Numerics
2.7 Utilitieso
2.7.1 Configuration

iii

Contents

iv Contents

2.72 Logging
3 Theory
3.1 fvm: Median-dual Finite Volume Method

IT Core functionalities

4 Create a Global Grid

4.1 Structured Grids
411 CH+versiono
4.1.2 Fortran version

4.2 Unstructured Grids

5 Create a Mesh from a Grid
5.1 CHF Versiono
5.2 Fortran version,

6 Create Fields and Field Sets

6.1 Standalone Fields and Field Sets
6.1.1 CH+version
6.2 Fortran version
6.3 Fieldsona given Grid 0oL
6.3.1 CH4version
6.3.2 Fortran versiono

7 Using the function space objects

7.1 NodeColumns
7.1.1 CH+version
7.1.2 Fortran version

7.2 StructuredColumns

7.3 Spectral

Introduction

Atlas is an ECMWF software framework for parallel flexible data-structures sup-
porting structured/unstructured grids, structured /unstructured meshes, various
function spaces and utilities. The main aim of Atlas is to investigate and develop
more scalable dynamical core options for numerical weather prediction (NWP).
Atlas is also intended to create modern interpolation and product generation
software.

Atlas is predominantly written in C4++, with the main features available to Fortran
through an F2003 interface. To be used effectively, it requires some knowledge of
Unix (such as Linux). It is known to run on a number of systems, some of which
are directly supported by ECMWFEF.

Atlas includes the following macro data objects.

Grid: a list of coordinates (i.e. points) without connectivity rules;

Mesh: a collection of elements linked by precise connectivity rules;

Field: a physical quantity such as wind velocity or pressure;

FieldSet: a collection of Fields;

FunctionSpace: a given spatial discretization space (e.g. spectral, finite
element, etc.).

From these objects it is possible to construct new algorithms to be tested within
the context of numerical weather prediction (NWP), to generate and manipulate
grids for production cases, etc. The overall structure of the library is depicted in
figure 1.

vi Introduction

From this figure, we note that there is the additional object called Metadata and
related to the Field object. Metadata contains a description of a given Field
(e.g. units, etc.). We also note that the Mesh object is formed by the Nodes
and HybridElements objects, with the last being composed by Elements. These
additional items represents the bricks to ultimately build the mesh object.

The structure in Fig. 1 will be further explained in chapter 2.

FieldSet
0.
To..'
Field Grid Mesh
0. K) 0. T Te T
; 1 1 1 / 1 ‘\ 1
Array Metadata FunctionSpace Nodes Cells Edges
interpreted b notation: UML
Field S it SRR FunctionSpace
@— Composition
<>— Aggregation
<}— Inheritance
functionspace:: functionspace:: functionspace:: functionspace::
NodeColumns EdgeColumns Spectral StructuredColumns

Figure 1 Schematics of the Atlas library.

Part 1

Getting Started

CHAPTER].

Download and installation

This chapter is intended to be a general introduction on how to download, install
and use Atlas. In particular, in section 1.1 we will present the general requirements
of the library. In section 1.2 we will first describe how to install the third-party
packages required by Atlas (if supported by ECMWF) and successively we will
outline how to install Atlas. Finally, in section 1.4 we show how to use Atlas by
creating a simple example that initializes and finalizes the library.

1.1 General requirements

Atlas is distributed as Git repository and is available at the ECMWF Stash git
hosting service: https://software.ecmwf.int/stash/projects. This can only
be accessed by ECMWF staff within the internal intranet. Occasionally, access can
be granted to external partners working on specific projects.

Atlas is currently available under Stash as Atlas project itself or under the Euro-
pean project ESCAPE. These two repositories are separated - specifically the Atlas
project under ESCAPE is a so-called Git fork of the main Atlas project. Given this
structure of the Atlas project, one can find the library either in the main repository:
https://software.ecmwf.int/wiki/display/ATLAS/Atlas

or in the ESCAPE repository:
https://software.ecmwf.int/stash/projects/ESCAPE/repos/atlas/browse.
If you encounter any problem accessing these pages, please contact Willem Decon-
inck (willem.deconinck@ecmwf .int).

Note that the main Atlas project is intended for ECMWF internal developments,
while the Atlas project under ESCAPE is intended for experimental developments
within the ESCAPE project. Note also that Atlas requires third-party libraries as

2

https://software.ecmwf.int/stash/projects
https://software.ecmwf.int/wiki/display/ATLAS/Atlas
https://software.ecmwf.int/stash/projects/ESCAPE/repos/atlas/browse
willem.deconinck@ecmwf.int

1.2 Installation 3

described in the section 1.2 below.

Finally, Atlas has been tested and works correctly with the following compilers:

GCC 4.8.1, Intel 13.0.1, 14.0.1 and CCE 8.2.7, 8.3.1.

1.2 Installation

Atlas requires a number of third-party libraries. Some of them are external third-
party libraries not maintained by ECMWF - these external libraries are briefly
described in section 1.2.1, where we also provide some useful links on how to
download and install them.

Some other third-party libraries are developed and maintained by ECMWEF. For this
set of libraries we provide a download and installation instructions in section 1.2.2.

1.2.1 External third-party dependencies

Atlas requires the following external third-party libraries (some of the links provided
may have changed, so we suggest the reader to lookup on the web for these packages):

e Git: Required for project management and to download the repository. For
use and installation see https://git-scm.com/

e CMake: Required for configuration and cross-compilation purposes. For use
and installation see http://www.cmake.org/

e MPI: Required for distributed memory parallelisation. For use and installa-
tion see for instance https://www.open-mpi.org/

e Python: Required for certain components of the build system. For use and
installation see https://www.python.org/.

e OpenMP (optional): Required for shared memory parallelisation. For use
and installation see http://openmp.org/wp/

e boost__unit__test (optional): Required for unit testing for C++. For use
and installation see http://www.boost.org/

e FFTW (optional): Required for the Fast Fourier Transform. For use and
installation see http://www.fftw.org/. This is only a dependency for the
ECMWF transi project, described in section 1.2.2

https://git-scm.com/
http://www.cmake.org/
https://www.open-mpi.org/
https://www.python.org/
http://openmp.org/wp/
http://www.boost.org/
http://www.fftw.org/

4 Chapter 1 Download and installation

Note that if you are an ECMWF staff member, you have some of the above libraries
already available through the module system. In particular you can load the
following packages as follows:

module load git cmake python

If you are not an ECMWF staff member you need to either install them manually
following the links above or ask your system administrator to verify whether these
packages are already available within your working environment.

1.2.2 ECMWEF third-party dependencies

Atlas additionally requires the following projects developed at ECMWEF:

e ecbuild: It implements some CMake macros that are useful for configuring
and cross-compiling Atlas and the other ECMWF third-party libraries required
by Atlas. For further information, please visit: https://software.ecmwf.
int/wiki/display/ECBUILD/ecBuild.

e eckit: It implements some useful C++ functionalities widely used in ECMWF
C++ projects. For further information, please visit: https://software.
ecmwf . int/wiki/display/ECKIT/ecKit

o fckit (optional): It implements some useful Fortran functionalities. For
further information, please visit: https://software.ecmwf.int/stash/
projects/ECSDK/repos/fckit/browse

e transi (optional): It implements the spectral transform. For further informa-
tion, please visit: https://software.ecmwf.int/stash/projects/ATLAS/
repos/transi/browse

In the following we will outline how to install each of the projects above.

The first step is to create a folder where to download, build and install all the
third-party projects required as well as where to build and install Atlas. Let us call
this folder myproject, create it and enter into the folder:

mkdir -p $(pwd)/myproject
cd myproject

We then need to create the following folder tree:

https://software.ecmwf.int/wiki/display/ECBUILD/ecBuild
https://software.ecmwf.int/wiki/display/ECBUILD/ecBuild
https://software.ecmwf.int/wiki/display/ECKIT/ecKit
https://software.ecmwf.int/wiki/display/ECKIT/ecKit
https://software.ecmwf.int/stash/projects/ECSDK/repos/fckit/browse
https://software.ecmwf.int/stash/projects/ECSDK/repos/fckit/browse
https://software.ecmwf.int/stash/projects/ATLAS/repos/transi/browse
https://software.ecmwf.int/stash/projects/ATLAS/repos/transi/browse

1.2 Installation 5

SRC=$ (pwd) /sources
BUILDS=$(pwd)/builds
INSTALL=$ (pwd) /install
mkdir -p $SRC

mkdir -p $BUILDS
mkdir -p $INSTALL

where the sources directory will contain the source files of each project, the builds
directory will contain the built projects and the install directory will contain the
installation of each project.

It is guaranteed at any point in time that all ECMWF projects have a git branches
called “master” and “develop”. These branches respectively in each project are
guaranteed to be compatible. The “master” branch contains the latest fixed release
version of each project, whereas the “develop” branch contains the latest daily
contributions to each project in preparation for future release versions. It is not
guaranteed that the “develop” branch of e.g. Atlas would be compatible with the
“master” branch of one if its dependencies (e.g. eckit).

When updating the “develop” branch of Atlas, it might therefore be advisable to
also update the “develop” branches of all of its dependencies. With the following,
we can specify which branch in every project will be built.

BRANCH=master

All ECMWEF projects can be built with different optimisation options. There are
the following three recommended options:

e DEBUG: No optimisation - used for debugging or development purposes only.
This option may enable additional boundschecking.

e BIT: Maximum optimisation while remaining bit-reproducible.

e RELEASE: Maximum optimisation.

With the following, we can specify which optimisation to use for the installation of
all projects.

BUILD_TYPE=RELEASE

We can now proceed to the download and install each of the ECMWF projects
required by Atlas.

6 Chapter 1 Download and installation

1.2.2.1 ecbuild

To download the project and switch to the correct branch, we can type on the
terminal the commands reported below:

git clone ssh://git@software.ecmwf.int:7999/ecsdk/ecbuild.git $SRC/ecbuild
cd $SRC/ecbuild
git checkout $BRANCH

This project is constituted by just a few CMake macros and it does not need to be
compiled nor installed. We do not need to to any additional step for ecbuild!

In the ecbuild project resides an executable script called ecbuild to aid installation
of all following projects. To make this script easily accessible, prepend it to the
PATH.

export PATH=$SRC/ecbuild/bin:$PATH

This executable script ecbuild acts as a wrapper around the cmake executable.
More information on this script can be obtained:

ecbuild --help

Particular options of the ecbuild script noteworthy are --build and --prefix.

e --build=$BUILD TYPE sets the build type to specified optimisation
e --install=$INSTALL sets the install prefix to the specified path

1.2.2.2 eckit

To download the project and switch to the correct branch, we can type on the
terminal the commands reported below:

git clone ssh://git@software.ecmwf.int:7999/ecsdk/eckit.git $SRC/eckit
cd $SRC/eckit
git checkout $BRANCH

Now that we have downloaded the project and switched to the correct branch, we
can proceed to build the project and install it. We first need to create the following
folder where the files will be built:

mkdir $BUILDS/eckit
cd $BUILDS/eckit

1.2 Installation 7

Then, we need to run ecbuild in order to configure the library - i.e. to find the
various dependencies required, etc. - and finally we need to run make install to
compile and install the library. These two steps are reported below:

ecbuild --build=$BUILD_TYPE --prefix=$INSTALL/eckit -- $SRC/eckit
make -j4 install

Note that if the folder $INSTALL/eckit is not already present it will be automati-
cally created.

1.2.2.3 fckit (optional)

To download the library and switch to the correct branch called develop, we can
type on the terminal the commands reported below:

git clone ssh://git@software.ecmwf.int:7999/ecsdk/fckit.git $SRC/fckit
cd $SRC/fckit
git checkout $BRANCH

Now that we have downloaded the library and switched to the develop branch, we
can proceed to build the library and install it. We first need to create the following
folder where the files will be built:

mkdir $BUILDS/fckit
cd $BUILDS/fckit

Then, we need to run ecbuild in order to configure the library - i.e. to find the
various dependencies required, etc. - and finally we need to run make install to
compile and install the library. These two steps are reported below:

ecbuild --build=$BUILD_TYPE --prefix=$INSTALL/fckit -- $SRC/fckit
make -j4 install

Note that if the folder $INSTALL/fckit is not already present it will be automati-
cally created.
1.2.2.4 transi (optional)

To download the library and switch to the correct branch called develop, we can
type on the terminal the commands reported below:

git clone ssh://git@software.ecmwf.int:7999/atlas/transi.git $SRC/transi
cd $SRC/transi

8 Chapter 1 Download and installation

git checkout $BRANCH

Now that we have downloaded the library and switched to the develop branch, we
can proceed to build the library and install it. We first need to create the following
folder where the files will be built:

mkdir $BUILDS/transi
cd $BUILDS/transi

Then, we need to run ecbuild in order to configure the library - i.e. to find the
various dependencies required, etc. - and finally we need to run make install to
compile and install the library. These two steps are reported below:

ecbuild --build=$BUILD_TYPE --prefix=$INSTALL/transi -- $SRC/transi
make -j4 install

Note that if the folder $INSTALL/transi is not already present it will be auto-
matically created.

1.2.3 Atlas installation

Once we have downloaded, compiled and installed the third-party dependencies
described above, we can now download and install Atlas. In particular, to download
the library and switch to the correct branch called develop, we can type on the
terminal the commands reported below:

git clone ssh://git@software.ecmwf.int:7999/atlas/atlas.git $SRC/atlas
cd $SRC/atlas
git checkout $BRANCH

Now that we have downloaded the library and switched to the develop branch, we
can proceed to build the library and install it. We first need to create the following
folder where the files will be built:

mkdir $BUILDS/atlas

cd $BUILDS/atlas

Then, we need to run ecbuild in order to configure the library - i.e. to find the
various dependencies required, etc. - and finally we need to run make install to
compile and install the library. These two steps are reported below:

$SRC/ecbuild/bin/ecbuild --build=$BUILD_TYPE --prefix=$INSTALL/atlas -- \

1.3 Inspecting your Atlas installation 9

-DECKIT_PATH=$INSTALL/eckit \
-DFCKIT_PATH=$INSTALL/fckit \
-DTRANSI_PATH=$INSTALL/transi \
$SRC/atlas

make -j4 install

Note that if the folder $INSTALL/atlas is not already present it will be automati-
cally created.

The following extra flags may be added to the ecbuild step to fine-tune configu-
ration:

-DENABLE_0OMP=0FF — Disable OpenMP
e -DENABLE MPI=0FF — Disable MPI
-DENABLE_FORTRAN=0FF — Disable Compilation of Fortran bindings

-DENABLE_TRANS=0FF — Disable compilation of the spectral transforms
functionality. This is automatically disabled if the optional transi dependency
is not compiled or found. In this case it is also unnecessary to provide
-DTRANSI PATH=$INSTALL/transi.

Note

By default compilation is done using shared libraries. Some systems

have linking problems with static libraries that have not been compiled
with the flag -fPIC. In this case, also compile atlas using static
linking, by adding to the ecbuild step the flag: --static

The building and installation of Atlas should now be complete and you can start
using it. With this purpose, in the next section we show a simple example on how
to create a simple program to initialize and finalize the library.

1.3 Inspecting your Atlas installation

Once installation of atlas is complete, an executable called "atlas" can be found in
$INSTALL/bin/atlas. Executing

>>> $INSTALL/bin/atlas --version
0.7.0

>>> $INSTALL/bin/atlas --git

10 Chapter 1 Download and installation

2d683ab4aalc

>>> $INSTALL/bin/atlas --info
atlas version (0.7.0), git-shal 2d683ab

Build:
build type : Release
timestamp 1 20160215122606
op. system : Darwin-14.5.0 (macosx.64)
processor : x86_64
c compiler : Clang 7.0.2.7000181
flags : -03 -DNDEBUG
c++ compiler : Clang 7.0.2.7000181
flags : -03 -DNDEBUG
fortran compiler: GNU 5.2.0
flags : -fno-openmp -03 -funroll-all-loops -finline-functions
Features:
Fortran : ON
MPI : ON
OpenMP : OFF
BoundsChecking : OFF
Trans : ON
Tesselation : ON
gidx_t : 64 bit integer
Dependencies:

eckit version (0.12.3), git-shal 7b76818
transi version (0.3.2), git-shal bf33£f60

gives you information respectively on the macro version, a more detailed git-version-
controlled identifier, and finally a more complete view on all the features that Atlas
has been compiled with, as well as compiler and compile flag information. Also
printed is the versions of used dependencies such as eckit and transi.

1.4 Using Atlas in your project

In this section, we provide a simple example on how to use Atlas. The objective
here is not to get familiar with the main functionalities of Atlas, but rather to show
how to get started! Specifically, we will show a simple “Hello world” program that
initialises and finalises the library, and uses the internal Atlas logging facilities to
print “Hello world!”. The steps necessary to compile and run the program will be
detailed in this section.

Note that the Atlas supports both C++ and Fortran, therefore, in the following,
we will show both an example using C++ and an example using Fortran. Before

—_ =

— O © 00 O Uik WK

1.4 Using Atlas in your project 11

starting, we create a folder called projectl in the sources directory:

mkdir -p $SRC/projectl

Here, we will add both the C++ and Fortran files of this simple example. Note
that there are (at least) two ways to compile the code we are going to write. The
first involves just using a C compiler for the C++ version and a Fortran compiler
for the Fortran version, without using any cmake files. The second involves using
cmake files. In the following, we will detail both possibilities.

1.4.1 C++ version
Program description

The C++ version of the Atlas initialization and finalization calls is depicted in
listing 1.1.

#include
#include

int main(int argc, char*x argv)

{
atlas::atlas_init (argc, argv);
atlas::Log::info () << << std::endl;
atlas::atlas_finalize ();
return O;
}

Listing 1.1 Initialization and finalization of Atlas using C++

We can create a new file in the folder projectl just generated:

touch $SRC/projectl/hello-world.cc

and copy the content of the code in listing 1.1 into it. We can now have a closer
look at the code. On line 1, we include the Atlas header file, we successively specify
a simple main function, in which we call the initialization of the Atlas library on
line 6. Note that we passed the two arguments of the main function argc and
argv to the atlas_init function. We finally call the Atlas atlas_finalize()
function at line 8 without passing any argument to it.

The function atlas_init() is responsible for setting up the logging facility and
for the initialization of MPI (Message Passage Interface), while the function
atlas_finalize() is responsible for finalizing MPI and closing the program. On

12

Chapter 1 Download and installation

line 7, we log “Hello world!” to the info log channel.

Atlas provides 4 different log channels which can be configured separately: debug,
info, warning, and error. By default, the debug channel does not get printed;
the info and warning channel get printed to the std::cout stream, and the error
channel gets printed to std::cerr. For more information on the logging facility, the
reader is referred to section 2.7.2.

Code compilation

We now need to compile the code. We first create a new directory into the $BUILDS
folder, where we will compile the code

mkdir -p $BUILDS/projectl

As mentioned above, there are (at least) two ways for compiling the source code
above. These are detailed below.

Directly with C++ compiler

The first possibility is to avoid using cmake and ecbuild and directly run a
C++ compiler, such as g++. For doing so, especially when Atlas is linked
statically, we need to know all Atlas dependent libraries. This step can be
easily achieved by inspecting the file

vi $INSTALL/atlas/lib/pkgconfig/atlas.pc

Here, all the flags necessary for the correct compilation of the C++ code in
listing 1.1 are reported. For compiling the code, we first go into the builds
directory just created and we generate a new folder where the executables
will be stored:

cd $BUILDS/projectl
mkdir -p bin

Note that, when using the cmake compilation route, it is not necessary
to generate the bin directory since it will automatically created during
compilation. After having generated the bin folder, we can run the following
command:

g++ $SRC/projecti/hello-world.cc -o bin/atlas_c-hello-world \
$ (pkg-config $INSTALL/atlas/lib/pkgconfig/atlas.pc —--libs --cflags)

1.4 Using Atlas in your project 13

This will compile our hello-world.cc file and it will automatically link all the
static and dynamic libraries required by the program. The executable, as
mentioned, is generated into the folder bin.

CMake/ecbuild

The second possibility is to create an ecbuild project, which is especially
beneficial for projects with multiple files, libraries, and executables. In
particular, we need to create the following cmake file

1 # File: CMakeLists.txt

2 cmake_minimum_required(2.8.4)
3 project (usage_example)

4

5 include (ecbuild_system)

6 ecbuild_requires_macro_version(1.9)

7 ecbuild_declare_project()

8 ecbuild_use_package(atlas)

9 ecbuild_add_executable(atlas_c-usage_example
10 hello-world.cc

11 ${ATLAS_INCLUDE_DIRS}
12 atlas)

13 ecbuild_print_summary ()

in the sources folder of our project $SRC/projectl. We can create the
CMakeLists.txt file in the correct directory following the two steps below:

cd $SRC/projectl
touch CMakeLists.txt

and copy the CMake code above into it. In the second line of the CMake
file above, we declare the minimum cmake version required to compile the
code, while in the second line we declare the name of our ecbuild project.
From line 5 to line 7 we include some required ecbuild macros necessary for
using ecbuild. On line 8 we specify that the Atlas library is required for this
project. Finally, on line 9 we add the instruction to compile the executable.
Line 13 prints just a compilation summary. We can build this simple ecbuild
project by going into our builds directory

cd $BUILDS/projectil

and by typing the following command:

ecbuild -DATLAS_PATH=$INSTALL/atlas $SRC/projectl/
make

Note that in the above command we needed to provide the path to the
Atlas library installation. Alternatively, ATLAS_PATH may be defined as an
environment variable. This completes the compilation of our first example

14 Chapter 1 Download and installation

that uses Atlas and generates an executable into the bin folder (automatically
generated by cmake) inside our builds directory for projectl.

Run the code

After the compilation of the source code is completed, we have an executable file
into the folder $BUILDS/projectl/bin/. If we simply run the executable file as
follows:

./atlas_c-hello-world

we obtain the output

[0] (2016-03-09 T 15:07:15) (I) -- Hello world!

However, by adding --debug to the command line, also debug information is
printed. In particular, if we type:

./atlas_c-hello-world --debug

we should obtain something similar to the following output:

[0] (2016-03-09 T 15:09:42) (D) -- Atlas program [atlas_c-hello-world]

[0] (2016-03-09 T 15:09:42) (D) -- atlas version [0.6.0]

[0] (2016-03-09 T 15:09:42) (D) -- atlas git
[dabb76e9b696c57fbe7e595b16£292f45547d628]

[0] (2016-03-09 T 15:09:42) (D) -- eckit version [0.11.0]

[0] (2016-03-09 T 15:09:42) (D) —-- eckit git
[ac7£6a0b3cb4f60d9dc01c8d33ed8addadc6de7]

[0] (2016-03-09 T 15:09:42) (D) -- Configuration read from scripts:

[0] (2016-03-09 T 15:09:42) (D) -- rundir

/home/na/nagm/myproject/builds/projectl
[0] (2016-03-09 T 15:09:42) (I) -- Hello world!
[0] (2016-03-09 T 15:09:42) (D) -- Atlas finalized

which gives us some information such as the version of Atlas we are running, the
identifier of the commit and the path of the executable.

1.4.2 Fortran version

Program description

The Fortran version of the Atlas initialization and finalization calls is depicted in
listing 1.2.

0~ O Uk Wi

Ne)

10

12

1.4 Using Atlas in your project 15

program hello_world

use atlas_module, only : &
& atlas_init, &
& atlas_finalize, &
& atlas_log

call atlas_init ()
call atlas_loglinfo()

call atlas_finalize ()

end program hello_world

Listing 1.2 Initialization and finalization of Atlas using Fortran

We can create a new file in the folder projectl just generated:

touch $SRC/projectl/hello-world.F90

and copy the content of the code in listing 1.2 into it. We can now have a closer look
at the code. On line 1, we define the program, called usage_example. On line 3, we
include the required Atlas libraries (note that we include only the three functions
required for this example - i.e. atlas_init, atlas_finalize), and atlas_log.
The function atlas_init() on line 8 is responsible for setting up the logging
and for the initialization of MPI (Message Passage Interface), while the function
atlas_finalize() on line 10 is responsible for finalizing MPI and closing the
program. On line 9, we log “Hello world!” to the info log channel.

Atlas provides 4 different log channels which can be configured separately: debug,
info, warning, and error. By default, the debug channel does not get printed;
the info and warning channel get printed to the std::cout stream, and the error
channel gets printed to std::cerr. For more information on the logging facility, the
reader is referred to section 2.7.2.

Code compilation

We now need to compile the code. We first create a new directory into the $BUILDS
folder, where we will compile the code

mkdir -p $BUILDS/projectl

As mentioned above, there are (at least) two ways for compiling the source code
above. These are detailed below.

16

Chapter 1 Download and installation

Directly with Fortran compiler

The first possibility is to avoid using cmake and ecbuild and directly run a
Fortran compiler, such as gfortran. For doing so, especially when Atlas is
linked statically, we need to know all Atlas dependent libraries. This step
can be easily achieved by inspecting the file. This step can be easily achieved
by inspecting the file

vi $INSTALL/atlas/lib/pkgconfig/atlas.pc

Here, all the flags necessary for the correct compilation of the Fortran code
in listing 1.2 are reported. For compiling the code, we first go into the builds
directory just created and we generate a new folder where the executables
will be stored:

cd $BUILDS/projectl
mkdir -p bin

Note that, when using the cmake compilation route, it is not necessary
to generate the bin directory since it will automatically created during
compilation. After having generated the bin folder, we can run the following
command:

gfortran $SRC/projectl/hello-world.F90 -o bin/atlas_f-hello-world \
$(pkg-config $INSTALL/atlas/lib/pkgconfig/atlas.pc --libs --cflags)

This will compile our hello-world.F90 file and it will automatically link all
the static and dynamic libraries required by the program. The executable, as
mentioned, is generated into the folder bin.

CMake/ecbuild

The second possibility is to use a cmake file that uses some ecbuild macros.
In particular, we need to create the following cmake file:

1 # File: CMakeLists.txt

2 cmake_minimum_required(2.8.4)
3 project (usage_example)

4

5 include (ecbuild_system)

6 ecbuild_requires_macro_version(1.9)

7 ecbuild_declare_project()

8 ecbuild_enable_fortran(${CMAKE_BINARY_DIR}/module
9)

10 ecbuild_use_package (atlas)

11 ecbuild_add_executable (atlas_f-usage_example

12 hello-world.F90

13 ${ATLAS_INCLUDE_DIRS}

14 ${CMAKE_CURRENT_BINARY DIR}

15 atlas_f)

16 ecbuild_print_summary ()

1.4 Using Atlas in your project 17

in the sources folder of our project $SRC/projectl. We can create the
CMakeLists.txt file in the correct directory following the two steps below:

cd $SRC/projectl
touch CMakeLists.txt

and copy the cmake code above into it. In the second line of the cmake
file, we declare the minimum cmake version required to compile the code,
while in the second line we declare the name of our cmake project. From
line 5 to line 7 we include some required ecbuild macros necessary for using
ecbuild. On line 8 we enable Fortran compilation, while on line 10 we specify
that the Atlas library is required for this project. Finally, on line 11 we add
the instruction to compile the executable. Line 15 prints just a compilation
summary. We can now run this simple cmake file by going into our builds
directory

cd $BUILDS/projectl

and by typing the following command:

$SRC/ecbuild/bin/ecbuild -DATLAS_PATH=$INSTALL/atlas $SRC/projectl/
make

Note that in the above command we needed to provide the path to the
Atlas library installation. Alternatively, ATLAS PATH may be defined as an
environment variable. This completes the compilation of our first example that
uses Atlas and generates an executable file into the bin folder (automatically
generated by CMake) inside our builds directory for projectl.

Run the code

After the compilation of the source code is completed, we have an executable file
into the folder $BUILDS/projectl/bin/. If we simply run the executable file as
follows:

./atlas_c-hello-world

we obtain the output

[0] (2016-03-09 T 15:27:00) (I) -- Hello world!

However, by setting the environment variable DEBUG=1, also debug information is
printed. In particular, if we type:

18 Chapter 1 Download and installation

export DEBUG=1
./atlas_c-hello-world

we should obtain something similar to the following output:

[0] (2016-03-09 T 15:27:04) (D) -- Atlas program [atlas_f-hello-world]

[0] (2016-03-09 T 15:27:04) (D) -- atlas version [0.6.0]

[0] (2016-03-09 T 15:27:04) (D) -- atlas git
[dabb76e9b696c57fbe7e595b16£292f45547d628]

[0] (2016-03-09 T 15:27:04) (D) -- eckit version [0.11.0]

[0] (2016-03-09 T 15:27:04) (D) —-- eckit git
[ac7f6a0b3cb4f60d9dc01c8d33ed8addadc6de7]

[0] (2016-03-09 T 15:27:04) (D) -- Configuration read from scripts:

[0] (2016-03-09 T 15:27:04) (D) -- rundir

/home/na/nagm/myproject/builds/projectl
[0] (2016-03-09 T 15:27:04) (I) -- Hello world!
[0] (2016-03-09 T 15:27:04) (D) -- Atlas finalized

which gives us some information such as the version of Atlas we are running, the
identifier of the commit and the path of the executable.

Tip

The outputs obtained for the Fortran and C++ versions should be
identical since they call exactly the same routines.

This completes your first project that uses the Atlas library.

CHAPTER 2

Design

The flowchart presented in the introduction of this document represents the macro
components making up the design of Atlas and reflects closely the capabilities of
Atlas. We subdivide this chapter in various sections, each of them representing
one of the components in figure 1. The order in which these components will be
presented starts from the grid and closes with the numerics. Note that some simple
examples are provided as part of this user-guide in part II.

2.1 Grid

The Grid object forms the base class of a hierarchical inheritance tree as shown
in figure 2.1. A Grid implementation may be structured or unstructured. The
Grid base class interface gives the capability to list the coordinates representing
the points of a given grid, and how many points exist in a given grid. It has no
knowledge of any domain decomposition or parallelisation in general. The grids
that Atlas constructs can be global or local. The GlobalGrid type represents a
complete spherical grid, whereas the LocalGrid type represents a limited area of
the sphere. Both global and local grids can be either structured or unstructured.
In figure 2.1 we show the various derived classes of the Grid class. Focussing on
the Global grid classification, there exist several possible sub classifications, such
as the following derived types:

e Unstructured — No structure is present in the grid

e Structured — The grid has a structured distribution of latitudes, and on
cach latitude a uniform distribution in zonal direction (constant A\ for one
latitude). No assumption is made on the location of latitudes, or the first
longitude value on one latitude.

19

20 Chapter 2 Design

Grid

Global <'/ Local <'/

Structured('/ Unstructured
: ([/ Custom Q
Gaussian Structured LonLat
N N

Reduced Regular m Reduced Regular L# or

Gaussian Gaussian LonLat LonLat L#x#

Classic Shifted S# or

Gaussian m LonLat < S#x#
Octahedral m Shifted Slon# or
Gaussian Lon Slontxi#
Shifted Slat# or
Lat Slat#x#

Figure 2.1 Grid class hierarchy.

The Structured serves as the base class for three additional derived types:

e CustomStructured — To instantiate a customised Structured grid, you have
to use the CustomStructured concrete class. Any of the following grids could
be expressed as a CustomStructured grid as well.

e Gaussian — The grid’s latitude distribution follows the roots of Legendre
polynomials. The resolutions of these grids are usually expressed by a number,
describing the number of latitudes between a pole and the equator.

e LonLat — The grid’s latitude distribution is uniform.
The Gaussian grid, in turn, serves as the base class for

e RegularGaussian — also referred to as full Gaussian grid. This Gaussian

2.1 Grid 21

grid has a constant number of points on each latitude, equal to 4 N, with N
the Gaussian number or number of latitudes between pole and equator.

e (ClassicGaussian — The number of points on each latitude is computed by
optimisations involving the orthogonality of associated Legendre polynomials.
This is a costly computations. Hence these tables have been pre-computed
for resolutions that have been used in the past at ECMWF.

e OctahedralGaussian — The number of points on each latitude can be in-
ferred from triangulating a regular octahedron, projected to sphere. Certain
modifications are required such as modifying the latitude locations to the
roots of the Legendre polynomials.

e ReducedGaussian — The number of points on each latitude can be configured
by the user.

The LonLat grid class, in turn, serves as the base class for

e RegularLonLat — This grid has a constant number of points on each latitude,
and includes typically the pole and the equatorial latitudes, and the Greenwich
meridian.

e ShiftedLonLat — This grid has a constant number of points on each latitude,
but is shifted half of a longitude increment and half of a latitude increment
compared to the RegularLonLat grid. This grid can also be referred to as the
dual grid of the RegularLonLat grid. It does not include pole and equatorial
latitudes, and not the Greenwich meridian.

e ShiftedLat — This grid has a constant number of points on each latitude, but
is shifted half of a latitude increment. It does not include pole and equatorial
latitudes, but includes the Greenwich meridian.

e ShiftedLon — This grid has a constant number of points on each latitude, but
is shifted half of a longitude increment compared to the RegularLonLat grid.
It includes pole and equatorial latitudes, but not the Greenwich meridian.

e ReducedLonLat — The number of points on each latitude can be configured by
the user. Typically these grids include the pole latitudes, and the Greenwich
meridian.

We note that the object-oriented construction of the Grid object allows one to
add any other grid that might be of interest without disrupting the existing grid
workflow.

22 Chapter 2 Design

Mesh

+ nodes : Nodes
+ cells : Cells
+ edges : Edges

1 ¢ 1 1
1 1 1

Nodes Cells Edges
+ lonlat : Field + global_index : Field + global_index : Field
+ global_index : Field + partition : Field + partition : Field
+ partition : Field + remote_index : Field + remote_index : Field
+ remote_index : Field + node_connectivity : Connectivity + node_connectivity : Connectivity
+ edge_connectivity : Connectivity + edge_connectivity : Connectivity + cell_connectivity : Connectivity
+ cell_connectivity : Connectivity + elements : vector<Elements> + elements : vector<Elements>

Figure 2.2 Mesh object composition

2.2 Mesh

The Mesh object describes how grid points are connected via lines, essentially
forming elements such as triangles, quadrilaterals, ... Furthermore, the Mesh can
be distributed across MPI tasks, called partitions. A Mesh object has no inherent
notion of structure. Therefore, the nodes and elements in a mesh partition, even if
originating from a structured grid could be in any order, and should be treated as
such. A Mesh is composed of Nodes, Cells, and Edges. These components each
contain information stored in Fields and Connectivity tables. In figure 2.2 we show
the composition of a Mesh object. Due to the distributed nature of the mesh, three
specific fields are required in the Nodes, Cells and Fdges, i.e. the global_index,
remote_index, and partition. More on parallelisation is presented in section 2.5.

Warning

Note that a mesh is not equal to a grid. The grid describes globally
the list of points without elements and connectivities, while a mesh is

A a list of nodes with specific connectivity rules, forming elements, and
is distributed among MPI tasks. Note also that, in Atlas, the number
of points of a grid is generally different from the number of nodes of a
mesh.

2.2.1 Nodes

The Nodes contains a Field called lonlat which contains the coordinates of the
nodes on the sphere in longitude and latitude degrees. Apart from the lonlat

2.2 Mesh 23

Connectivity

1

0.* 1
BlockConnectivity < MultiBlockConnectivity
J}o: 0.
1 ¢
0.* 1
ElementType p 1: Elements HybridElements
Cells Edges

Figure 2.3 Class diagram related to the mesh Edges and Cells

field, any Field which relates to the mesh nodes can be stored in the Nodes object.
The Nodes therefore can also be seen as a specialised FieldSet (see section 2.3).
Also stored in the Nodes object are connectivity tables relating the mesh nodes to
edges and /or elements present in the mesh. These tables are only allocated upon
request.

2.2.2 Elements and Connectivity

As depicted in figure 2.3, the Cells and Edges classes derive from a class HybridEle-
ments. The reason for the naming hybrid refers to the possibility of having groups
of elements with different element types present under the same umbrella. One
group of elements sharing the same ElementType is accessible through the Elements
class. The HybridElements class on the other hand offers access to all elements
irrespective of their FlementType. It could be advantageous for an algorithm
to loop over Elements corresponding to one ElementType, and apply specialised
instructions in a nested loop applicable to all elements of that specific ElementType.
Because of grouping of elements per FElementType, Connectivity tables that
e.g. relate elements to nodes have the appearance of blocks. To clarify, imagine
2 triangular elements and 3 quadrilateral elements. The table of connectivities
represented by the MultiBlockConnectivity class would have the form:

element 1: X X X
element 2: X X X
element 3: X X X X
element 4: X X X X
element 5: X X X X

24 Chapter 2 Design

Grid \

GridDistribution |-~

MeshGenerator > Mesh

MeshGenerator

T

Structured Delaunay

Figure 2.4 Mesh generation workflow, and MeshGenerator class diagram

This MultiBlockConnectivity table, can also be interpreted by two BlockConnectivity
tables:

blockl, element 1: X X X
blockl, element 2: X X X
block2, element 1: X X X X
block2, element 2: X X X X
block2, element 3: X X X X

Multiple BlockConnectivity tables share exactly the same memory as the one Multi-
BlockConnectivity which is stored in the HybridElements. The Elements objects,
which are also stored in the HybridElements and each hold a BlockConnectivity,
therefore don’t occupy any significant memory.

2.2.3 Mesh generation

The mesh is constructed using the class MeshGenerator which can generate a
mesh taking as input a Grid, and and optionally a GridDistribution. The Grid-
Distribution describes for each grid point which MPI task or partition the point
belongs to. If the GridDistribution is not given, the MeshGenerator will internally
create a temporary GridDistribution internally. More on this can be found in sec-
tion 2.5. The MeshGenerator base class can have several concrete implementations.
Depending on the Grid type used, some concrete implementations may not be
available. For Structured grid types, the mesh::generators::Structured is available.
This mesh generator is very fast as it can take advantage of the structured nature of
a Structured grid. For any Grid, a slower Delaunay triangulation is also available.
Figure 2.4 shows the usage and class diagram of the MeshGenerator.

2.3 Field and FieldSet 25

Figure 2.5 Field and FieldSet object composition

2.3 Field and FieldSet

Field objects encapsulate given fields, such as the temperature or the pressure, and
they can be grouped into FieldSets. The class diagram of the field object is depicted
in figure 2.3. In particular the Field object is composed of the Array object which
contains the actual field data, and the Metadata object which contains descriptions
of the field. A Field also contains a reference to a FunctionSpace object, described
section 2.4.

2.4 FunctionSpace

The FunctionSpace defines how a Field is represented on the domain. There exist
a variety of possible function spaces. Examples include functionspace::Spectral, func-
tionspace::Structured Columns, functionspace::NodeColumns, and functionspace::EdgeColumns.
These are illustrated in the FunctionSpace class inheritance diagram in figure 2.6.

o functionspace::Spectral describes the discretisation in terms of spherical har-
monics. The parallelisation (gathering and scattering) in spectral space is
delegated to a Trans object (in turn delegating to the IFS trans library)

o functionspace::StructuredColumns describes the discretisation of distributed
fields on a Structured grid. At the moment the Structured must be a Gaussian
grid for parallel usage as a Trans object is responsible for the parallelisation.
In a future release this will be generalised to use a GatherScatter object
instead, which does not rely on having a Gaussian grid.

Fields described using this function space may also be defined to have levels.

e functionspace::NodeColumns describes the discretisation of fields with values
colocated in the nodes of a Mesh, and may have multiple levels defined in a ver-
tical direction. These fields may have parallel halo’s defined. A HaloEzchange
object and GatherScatter object are responsible for parallelisation.

26 Chapter 2 Design
interpreted b
Field Ry] FunctionSpace
functionspace:: functionspace:: functionspace:: functionspace::
NodeColumns EdgeColumns Spectral StructuredColumns

K X Tj OH;T 19 ¢ j [2
Mesh grid : Structured

HaloExchange Trans

GatherScatter Parallelisation

Figure 2.6 FunctionSpace object diagram

e functionspace::EdgeColumns describes the discretisation of fields with val-

ues colocated in the edge-centres of a Mesh, and may have multiple levels
defined in a vertical direction. These fields may have parallel halo’s de-
fined. A HaloExchange object and GatherScatter object are responsible for
parallelisation.

2.5 Parallelisation

As described section 2.2 and shown in figure 2.2, the Nodes, Cells, and Fdges
contain three fields related to parallelisation:

e global_index — This Field contains for each node or element in the mesh

partition a unique global index or ID as if the mesh was not distributed.
This global index is independent of the number of partitions the mesh is
distributed in.

partition — This Field contains for each node or element the partition
index that has ownership of the node or element. Nodes or elements whose
partition does not match the partition index of the mesh partition are also
called ghost nodes or ghost elements respectively. These ghost entities merely
exist to facilitate stencil operations or to complete e.g. a mesh element.

2.6 Numerics 27

e remote_index — This Field contains for each node or element the local index
in the mesh partition with index given by the partition field.

With the knowledge of partition and remote_index, we now know for each
element or node which partition owns it, and at which location. Usually the user
has not to be aware of these three fields as they are more required for Atlas’ internal
parallelisation capabilities.

Atlas has two parallel communication pattern classes that can be setup to store
how data can be sent and received between MPI tasks.

e The GatherScatter class stores the communication pattern of gathering all
data to one MPI task, and the inverse, scattering or distributing all data
from one MPI task to all MPI tasks.

e The HaloEzchange class stores the communication pattern of sending and re-
ceiving data to nearest neighbour (in domain decomposition sense) MPI tasks,
typically required in exchanging small halo’s of ghost entities surrounding a
domain partition.

2.6 Numerics

Apart from serving as a framework for constructing a flexible data structure, At-
las also provides some numerical algorithms such as gradient, divergence, curl,
and laplacian operators. The gradient, divergence, curl and laplacian operators
are bundled in a abstract Nabla class, of which a concrete implementation can
be instantiated with a Method object. This is illustrated in figure 2.7. Here
a concrete fum::Nabla is constructed using a concrete fom::Method. These con-
crete classes implement a median-dual finite volume method. The fum::Method
internally uses two FunctionSpaces, i.e. a functionspace::NodeColumns, and a
functionspace::EdgeColumns, required to interprete Fields residing in nodes and
edge-centres. For more information on the median-dual Finite Volume Method, see
section 3.1.

2.7 Utilities

A number of utilities is also available Atlas. These include emphMesh writing, mpi
communication, error and exception handling, runtime behaviour, etc.

28 Chapter 2 Design

Nabla
+ gradient()
+ divergence()
+ curl()
+ laplacian() Method
fvm::Nabla %ﬁ fvm::Method
1 1
1 1
functionspace:: functionspace::
NodeColumns EdgeColumns
¢ ¢ 0.% 0. 14 14
Mesh

HaloExchange

GatherScatter

Figure 2.7 Class diagram for the fom::Nabla operator

2.7.1 Configuration
2.7.2 Logging
TODO

CHAPTER 3

Theory

3.1 fvm: Median-dual Finite Volume Method

TODO

29

Part 11

Core functionalities

30

CHAPTER 4

Create a Global Grid

In this section, we show how to create a global grid with Atlas. We remind the
reader that global grid refers to a grid covering the entire sphere (e.g. the entire
earth for instance). In addition, with the term grid we intend a list of points
without any specific connectivity rule.

As explained in chapter 2, Atlas supports various global grids. Within the library,
these grids are identified by some convenient keys. In the rest of the chapter we
will divide the various global grids available in the following macro areas:

e Structured grids,

e Unstructured grids.

and we will specify the keys needed to automatically generate a given grid in both
C++ and Fortran. Note that it is also possible to create a grid manually, however
this approach is not currently explained in this document. It is also important to
remark that for the Structured grids, the memory footprint is negligible since the
information regarding the points are not stored but are computed at runtime when
requested. The last typology, unstructured, has instead a non-negligible memory
footprint since in this case the points are effectively stored in memory.

4.1 Structured Grids

There exists various subsets of structured grids in Atlas. All of them can be
constructed using the same method called Structured::create() . In particular,
we need to pass a predefined key identifying the grid we want to create to the
constructor in order to generate the object grid. This object, in turn, contains

31

0O~ O ULk W

e e e el el
0O~ O U WN~ OO

32 Chapter 4 Create a Global Grid

various methods that allows the user to retrieve the number of points of the
generated grid, the number of longitudes and latitudes, and the coordinates a given
longitude and latitude.

The predefined keys existing in Atlas for Gaussian grids are reported in the following:

e (lassic reduced Gaussian grid — N#,
e Regular Gaussian grid — F#,

e Octahedral reduced Gaussian grid — 0#,
where # represents the number of latitudes in one hemisphere.

e RegularLonLat — L# or L#x#

e ShiftedLonLat — S# or S#x#

where in the alternative key, the first # represents the total number of longitudes,
while the second # specifies the total number of latitudes from pole to pole.

In the next two subsections we will present two simple examples, the first in C4++
and the second in Fortran, to generate global grids through the predefined keys
just outlined. We will also show how to retrieve some useful information regarding
the grid generated.

4.1.1 C+H+ version

The listing 4.1 shows how to construct a generic structured grid.

#include

#include

#include

using atlas::atlas_init;

using atlas::atlas_finalize;
using atlas::grid::Structured;
using atlas::Log;

int main(int argc, char xargv[])

{
atlas_init (argc, argv);
Structured::Ptr grid(Structured::create());
Log::info () << << grid->nlat() << std::endl;
Log::info () << << grid->nlon(0) << std::endl;

Log::info () << << grid->npts() << std::endl;

19
20
21
22
23
24
25
26
27
28
29
30

4.1 Structured Grids 33

double lonlat [2];
grid->lonlat (0, 1, lonlat);
Log::info () << << grid->lat (0) << std::endl;
Log::info () << << grid->lon(0,1) << std::endl;
Log::info () << << lomnlat [0] <<
<< lonlat[1] << std::endl;
atlas_finalize () ;
return O;
}

Listing 4.1 Generating a Gaussian grid with Atlas using C++

We create the global grid object (see line 14). In particular, we call the grid
constructor passing the command-line string (that represents the key of the grid we
want to create) to it. The default value is set to 032, that represents a octahedral
reduced Gaussian grid with 32 latitudes in one hemisphere (i.e. 64 latitudes in total).
The command-line string (i.e. the key) must be contained in the predefined keys for
reduced grid generation as specified before. If the user uses a non-existent keyword,
there will appear an error message. The grid object, grid, is a Structured type
and it will allow us to access some useful information about the grid.

It is now possible to run this simple program by using one command-line argument
representing the keyword that identifies an Atlas predefined grid. For instance, we
can execute the following command line

./atlas_c-global-grids-Structured

This will generate an octahedral reduced Gaussian grid with 32 latitudes on one
hemisphere (i.e. 64 latitudes in total).

The output to the screen of the code we just executed contains some useful
information regarding the grid.

In particular, the first three numbers represent the number of latitudes, longitudes
and points of the structured grid, respectively. Note that we can directly access
them through the grid object (see lines 19, 20, 21).

0~ O Uk W

34 Chapter 4 Create a Global Grid

Tip
For the number of latitudes and points we do not need to provide
1, any argument to the function retrieving the information. On the
‘@' other hand, for the number of longitudes we do need to additionally
provide the index of a specific latitude, since the number of longitudes
may depend on the latitude (see chapter 2 for more details on how a
structured grid is constructed).

The last three numbers represent the coordinates of a given latitude, longitude
and both longitude and latitude together, respectively. Note again how these
information can be directly accessed through the object grid. Also, for retrieving
a given latitude coordinate it is only necessary to specify one index that refers to
that particular latitude (see line 23). On the other hand, for a given longitude we
need to provide both the index of the latitude and the index of the longitude, since
the longitude may depend on the latitude (see line 21 and 24).

4.1.2 Fortran version

The listing 4.2 shows how to construct a generic structured grid.

program main

use atlas_module

implicit none

character (len=1024) :: string
type (atlas_grid_Structured) :: grid
call atlas_init ()

grid = atlas_grid_Structured()

write(string,) , gridYnlat ()
call atlas_loglkinfo(string)

write(string,) , gridnlon (1)
call atlas_logkinfo(string)

write(string,) , gridinpts ()
call atlas_loglinfo(string)

write(string,) , gridjlat (1)
call atlas_logiinfo(string)

write(string,) , gridflon(1l, 1)
call atlas_loglinfo(string)

call atlas_finalize ()

end program main

Listing 4.2 Generating a Gaussian grid with Atlas using Fortran

4.1 Structured Grids 35

We create the global grid object (see line 9). In particular, we call the grid
constructor passing the command-line string (that represents the key of the grid we
want to create) to it. The default value is set to 032, that represents a octahedral
reduced Gaussian grid with 32 latitudes in one hemisphere (i.e. 64 latitudes in
total). The grid object, grid, is an atlas_grid_Structured type and it will allow
us to access some useful information about the grid.

It is now possible to run this simple program with the following command line

./atlas_f-global-grids-Structured

This will generate an octahedral reduced Gaussian grid with 32 latitudes on one
emisphere (i.e. 64 latitudes in total).

The output to the screen of the code we just executed contains some useful
information regarding the grid.

In particular, the first three numbers represent the number of latitudes, longitudes
and points of the grid, respectively. Note that we can directly access them through
the grid object (see lines 11, 14, 17).

Tip

For the number of latitudes and points we do not need to provide
1 any argument to the function retrieving the information. On the
other hand, for the number of longitudes we do need to additionally
provide the index of a specific latitude, since the number of longitudes
may depend on the latitude (see chapter 2 for more details on how a
structured grid is constructed).

The last two numbers represent the coordinates of a given latitude and longitude,
respectively. Note again how these information can be directly accessed through
the object grid. Also, for retrieving a given latitude coordinate it is only necessary
to specify one index that refers to that particular latitude (see line 20). On the
other hand, for a given longitude we need to provide both the index of the latitude
and the index of the longitude, since the longitude may depend on the latitude (see
line 23).

You can now play with line 9 to generate different types of global structured grid
using the keys introduced at the beginning of this section!

36 Chapter 4 Create a Global Grid

4.2 Unstructured Grids

Coming soon ...

0O~ O ULk W

= e
UL W= OO

17

—_
oo

CHAPTER 5

Create a Mesh from a Grid

In this chapter, we show how to create a mesh with Atlas starting from a grid. We
assume that the reader already knows how to create a grid (see chapter 4).

Note

With the term grid we intend a list of points without any specific
connectivity rule, while with the term mesh we intend a list of points

with well-specified connectivity rules.

As before, we show both the C++ and Fortran version for this example.

5.1 C++ version

The listing 5.1 shows how to construct a mesh starting from a grid.

#include
#include
#include
#include
#include
#include

using
using
using
using
using
using

int main(int

{

atlas_init (argc, argv);

atlas::
atlas::
atlas:
atlas:
atlas::
atlas:

:grid::Grid;
:mesh::Mesh;

:util::Config;

atlas_init;
atlas_finalize;

output ::Gmsh;

argc, char xargv[])

37

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

38 Chapter 5 Create a Mesh from a Grid

atlas::mesh::generators::Structured meshgenerator;

Grid::Ptr grid(Grid::create())
Mesh::Ptr mesh(meshgenerator.generate (*grid));

Gmsh gmsh_2d() g
Gmsh gmsh_3d(, Config(s))

gmsh_2d.write (*mesh);
gmsh_3d.write (xmesh) ;

atlas_finalize();

return O0;

Listing 5.1 Generating a mesh starting from a grid in Atlas using C++

Once defined the command-line behaviour, we first create a global structured grid
object (see line 24). For more details on how to create a grid see chapter 4.

We then create a mesh::generators::Structured object called generate_mesh
that will allow us to generate the mesh starting from a structured grid. We
successively create a mesh object, mesh of the Mesh type on line 27 using the mesh
generator.

In this simple example we took the freedom to add a few lines to show how to
visualize the mesh in Gmsh. In particular, on line 29 we define a Gmsh object
called gmsh that will be used to generate a Gmsh output. On line 30 we specify
that we want to have some information regarding the mesh - this is achieved by
defining as true the tag "info". Between line 31 and 35, we add two additional
lines to visualize the mesh in 3D if required on the command-line. Finally, on line
36 we write the mesh and save it into mesh.msh. Note that the file containing the
information on the mesh just created is called mesh_info.msh.

It is now possible to run this simple program by using two command-line argu-
ments representing the keyword that identifies an Atlas predefined grid and the
visualization type we want (either 2D or 3D), respectively. For instance, we can
execute the following command line

./atlas_c-meshes-Structured
This will produce an octahedral reduced Gaussian mesh (stored in mesh.msh) with

32 latitudes on one hemisphere (i.e. 64 latitudes in total). It will also produce an
additional file, called mesh_info.msh, containing some information regarding the

0O~ O UL WK

= e = = e = e e
0O Ui WN ~ OO

5.2 Fortran version 39

Figure 5.1 Meshes visualised in Gmsh

mesh. Note that we used the additional command-line argument -visualize 3D.
This will produce a 3D representation of the mesh, such as the one depicted in left
side of figure 5.1.

We can re-run the executable file in order to obtain a 2D representation as follows:

./atlas_c-meshes-Structured --grid 032 --visualize 2D

This will produce a representation of the mesh like the one depicted on the right
side of figure 5.1. You can now play with the command-line argument to generate
different types of global structured meshes using the keys introduced in chapter 4!

5.2 Fortran version

The listing 5.1 shows how to construct a mesh starting from a grid.

program main

use atlas_module

implicit none

type(atlas_Grid) 1 grid

type (atlas_Mesh) :: mesh

type (atlas_MeshGenerator) :: meshgenerator
type (atlas_QOutput) :: gmsh_2d, gmsh_3d
call atlas_init ()

! Generate mesh

meshgenerator = atlas_meshgenerator_Structured()
grid = atlas_grid_Structured("032")

mesh = meshgeneratorygenerate (grid)

gmsh_2d = atlas_output_Gmsh("mesh2d.msh")

gmsh_3d = atlas_output_Gmsh("mesh3d.msh",coordinates="xyz")

19
20
21
22
23
24
25
26
27
28
29
30
31
32

40 Chapter 5 Create a Mesh from a Grid

! Write mesh
call gmsh_2d%write (mesh)
call gmsh_3d%write(mesh)

! Cleanup

call grid¥%final ()

call mesh%final ()

call gmsh_2d%final ()

call gmsh_3d%final ()

call meshgenerator’final ()

call atlas_finalize ()

end program main

Listing 5.2 Generating a mesh starting from a grid in Atlas using Fortran

We first create a global structured grid object (see line 13). For more details on
how to create a grid see chapter 4.

We successively create the mesh object on line 15 and 16. In particular, we first
define a atlas_Meshgenerator object that is then used to effectively generate the
mesh object mesh that is an atlas_Mesh type.

In this simple example we took the freedom to add just one line line to visualize
the mesh in Gmsh. In particular, on line 17 we call atlas_write_gmsh to write a
Gmsh file called mesh.msh. Note that at the end of the program we also need to
destroy the local object created in this program (see lines 19 to 21).

It is now possible to run this simple program by using a command-line arguments
representing the keyword that identifies an Atlas predefined grid. For instance, we
can execute the following command line

./atlas_c-meshes-Structured

This will produce an octahedral reduced Gaussian mesh (stored in mesh.msh) with
32 latitudes on one hemisphere (i.e. 64 latitudes in total). If we visualize it in
Gmsh, we will obtain something similar to figure 5.2. You can now play with the
command-line argument to generate different types of meshes for global grids using
the keys introduced in chapter 4!

5.2

~mwmvmmma'a,*‘=,vsm SR <“~m,,ﬁf§£'.m€‘=.g=ss.sn%w o
‘?‘ﬂﬂ:'q“%ma.mns‘ eteeee e amm'hm,sm%xevllamﬂ

S @gﬁw&zzﬂﬂaynw e

ST ST
ﬁ«%%ﬁﬁs%%%.

Figure 5.2 Mesh visualised in Gmsh

Fortran version

41

0~ O U W

== e e e e e
DU WD = O O

17

—_
[e]

19

CHAPTER 6

Create Fields and Field Sets

In this chapter, we show how to create fields and field sets using Atlas. Specifically,
we outline how to create two simple fields and how to include them into a field
set. These two fields are standalone, thus not related to any grid - i.e. they are
just defined as generic multidimensional arrays containing some values and a short
description of what is stored inside them. Successively, we introduce how to create
two fields on a given grid and again how to add them to a field set. As done for

the other examples, we show both the C+4 and Fortran versions.

6.1 Standalone Fields and Field Sets

6.1.1 C-++ version

The listing 6.1 shows how to construct two standalone fields and encapsulate them
into a field set.

#include
#include
#include
#include
#include

using
using
using
using
using
using
using

int main(int

{

atlas::
atlas::
atlas:
atlas:
atlas:
atlas::
atlas::

atlas_init;
atlas_finalize;

:Log;

:field:
:field:
array:
array:

:Field;
:FieldSet;
:ArrayView;
:make_shape;

argc, char *argv[])

atlas_init (argc, argv);

// Define fields

42

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63

64
65
66
67
68
69
70
71
72
73

43

6.1 Standalone Fields and Field Sets
Field::Ptr field_pressure(
Field::create<double>(, make_shape (100)));
Field::Ptr field_wind(
Field::create<double>(, make_shape (100, 2)));

// Access field data
ArrayView <double,1> pressure(xfield_pressure);
ArrayView <double,2> wind (xfield_wind) ;
// Assign values to fields
for (size_t jnode = 0; jnode < 100; ++jnode)
{

pressure (jnode) 101325.0;

wind (jnode ,0) = 0.01 + double(jnode);

wind (jnode ,1) = 0.02 + double(jnode) ;
}
// Add info to fields
std::string unitsP, unitsW;
field_pressure->metadata() .set(s)
field_pressure->metadata () .get (, unitsP) ;
field_wind ->metadata () .set (s)
field_wind ->metadata () .get (, unitsW) ;
// Define fieldSet
FieldSet fields;
fields.add (xfield_pressure); // Add field_pressure to fieldSet
fields.add(*xfield_wind); // Add field_wind to fieldSet
// Retrieve field from fieldSet
Field& field_pressure2 = fields.field()
Field& field_wind2 = fields.field()
// Print some useful <info
Log::info () << << field_wind->name () << std::endl;
Log::info () << << field_wind->size () << std::endl;
Log::info () << << unitsW << std::endl;
Log::info () << << field_wind->rank () << std::endl;
Log::info () << << field_wind->shape (0) <<

<< field_wind->shape (1) << std::endl;
Log::info () << << field_wind->bytes ()
<< << std::endl;

Log::info () << << field_wind->datatype().str() << std::
endl;
Log::info () << << field_wind->datatype () .kind () << std::
endl;
// Print some wvalues
Log::info () << << pressure(9) << std::endl;
Log::info () << << wind (9,0) << std::endl;
Log::info () << << wind (9,1) << std::endl;
atlas_finalize();
return 0;

Listing 6.1 Generating two fields and encapsulating them into a FieldSet using C++

44 Chapter 6 Create Fields and Field Sets

On the first few lines of the code, we include the necessary Atlas header files needed
for this example. Note in particular the inclusion of Field.h, FieldSet.h and
Metadata.h. The first is necessary to define fields, the second to define field set
and the third to add a description to the fields.

We then define two fields, one called field_pressure that, for instance, will contain
the pressure, and the other one called field_wind that will for example contain
the velocity of the wind in two orthogonal directions.

How does the creation of a field work?

On lines 18 and 20, we can see the construction of the two fields. We first need to
declare a pointer of type Field and we successively call the constructor for this
field. This is composed by three elements: the type of data contained within the
field (in our case double), the name of the field as a string (in our case 'pressure’)
and its dimensions. Note that we allow multidimensional fields up to 6 dimensions
(this number can be extended if required)!

Tip
In a field we can only store numbers - no strings or characters! In
particular, we support 32 and 64 bit integer and real types.

Once the fields are defined we need to initialize them and give them some values.
This task can be achieved by using the code on lines 24 and 25, where we acquire
access to the two fields using ArrayView objects, pressure and wind. We succes-
sively prescribe some values to these two objects (see lines 28 to 33). This step
automatically updates what is stored in the two field objects, field_pressure and
field_wind.

The work for defining the two fields is almost completed. We can add just one
more little feature - one or more descriptors. This task is performed on lines 37 to
40, where we use the metadata object to set the units of our fields and retrieve
them through the functions, set and get, respectively.

These two fields are fully functional and can be used for our specific application.
However, we may want to encapsulate several fields into one object. This task can
be achieved by using the object FieldSet, as show on lines 43 to 45, where we
define the field set and we add the two fields into it.

Any field can also be retrieved from a FieldSet by using the code on lines 48 and
49, where we ask for the field 'pressure’ and the field 'wind’ to be retrieved by two
new empty fields.

6.1 Standalone Fields and Field Sets 45

Note

It is possible to retrieve a field from a FieldSet either by using the

name of the field or by using the number identifying it. In our example,
field_pressure assumes id=0 (since stored first), while field_wind
assumes id=1 (since stored second).

After having defined the field set, we print some useful information regarding
the fields (for the sake of brevity we print just some information regarding the
field_wind - the information regarding the field_pressure can be obtained in
an identical way). In particular, we print the name, the size and the metadata
associated to the field_wind (see lines 52 to 54). We then extract its rank, shape
and dimensions in bytes (see lines 55 to 58). We finally print type of the data
stored in the field (see lines 60 and 61).

On lines 64 to 66 we also print the values of one element per each field. Note that
the memory of the objects defined in this example is automatically released when
the execution ends. So, there is no need to manually destroy the objects. This
aspect is different in the Fortran example below, where we will need to explicitly
finalise all the objects created!

It is now possible to run this simple program typing the following text on the
terminal

./atlas_c-fields

This will produce the two fields described and a field set and will destroy them at
the end of the routine, thus automatically releasing the memory. It will also print
to the screen some useful information regarding the fields - specifically you should
obtain a screen output similar to the one below:

[0] (2016-03-15 T 15:57:33) (I) -- name = wind

[0] (2016-03-15 T 15:57:33) (I) -- size = 200

[0] (2016-03-15 T 15:57:33) (I) -- units = [m/s]

[0] (2016-03-15 T 15:57:33) (I) -- rank = 2

[0] (2016-03-15 T 15:57:33) (I) -- shape = 100 2
[0] (2016-03-15 T 15:57:33) (I) -- memory = 1600 bytes
[0] (2016-03-15 T 15:57:33) (I) -- type = real64

[0] (2016-03-15 T 15:57:33) (I) -- kind = 8

[0] (2016-03-15 T 15:57:33) (I) -- pressure(9) = 101325
[0] (2016-03-15 T 15:57:33) (I) -- wind(9, 0) = 9.01
[0] (2016-03-15 T 15:57:33) (I) -- wind(9, 1) = 9.02

0O~ O UL W N~

= s e e e e
© 00 O Uk WK~ OO

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

46 Chapter 6 Create Fields and Field Sets

You can now play with the code in listing 6.1 to generate as many fields/field sets

as you want!

6.2 Fortran version

The listing 6.2 shows how to construct two standalone fields and encapsulate them

into a field set.

program main
use, intrimsic :: iso_c_binding, only : c_double
use atlas_module
implicit none
integer , parameter :: wp = c_double
integer :: jnode
character (len=1024) :: string
character (len=:), allocatable :: unitsW, unitsP
type(atlas_Field) :: field_pressure , field_wind
type (atlas_Field) :: field_pressure2, field_wind2
real (wp), pointer :: pressure(:), wind (:,:)
type (atlas_FieldSet) :: fields
type (atlas_Metadata) :: metadata
call atlas_init ()
! Define fields
field_pressure = atlas_Field(name= , kind=atlas_real (wp),
=[1001)
field_wind = atlas_Field(name= , kind=atlas_real (wp),
=[2, 1001)
! Access fields data
call field_pressure’data(pressure)
call field_wind %data (wind)
! Assign wvalues to fields
do jnode=1,100
pressure (jnode) = 101325. _wp
wind (1, jnode) = 0.01_wp + real(jnode,kind=wp)
wind (2, jnode) = 0.02_wp + real(jnode,kind=wp)
enddo
! Add info to fields
metadata = field_pressure/metadata ()
call metadata¥%set(,)
call metadata’get(, unitsP)
metadata = field_windY%metadata ()
call metadata%set(5)
call metadata%get(, unitsW)
! Define fieldSet

fields = atlas_FieldSet ()
call fields’)add(field_pressure) ! Add field_pressure to fieldSet
call fieldsadd(field_wind) ! Add field_wind to fieldSet

! Retrieve field from fieldSet
field_pressure2 = fields)%field()

shape

shape

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

6.2 Fortran version 47

field_wind2 = fields¥%field()

! Print some useful info

write (string, *) , field_wind%name ()
call atlas_loglinfo(string)

write (string, *) , field_wind¥%size ()
call atlas_loglinfo(string)

write (string, *) , unitsW

call atlas_logiinfo(string)

write (string, x*) , field _wind%rank ()
call atlas_logkinfo(string)

write (string, *) , field_wind%shape (1)
call atlas_loglinfo(string)

write (string, x*) , field_wind’shape (2)
call atlas_logiinfo(string)

write (string, *) , field_wind%shape ()
call atlas_logiinfo(string)

write(string, *) , field_wind%bytes (),
call atlas_logiinfo(string)

write(string, *) , field_wind%datatype ()
call atlas_logiinfo(string)

write (string, *) , field_wind%kind ()
call atlas_logiinfo(string)

! Print some walues

write (string, *) , pressure (10)
call atlas_loglinfo(string)

write (string, *) , wind (1,10)
call atlas_logiinfo(string)

write (string, *) , wind (2,10)
call atlas_logikinfo(string)

! Finalize object to rTelease memory
call field_pressure/final ()
call field_wind %final ()
call fields %final ()

call atlas_finalize ()
end program main

Listing 6.2 Generating two fields and encapsulating them into a FieldSet using Fortran

On the first few lines of the code, we define the variables needed for this program. In
particular, the Atlas specific variables needed for this example are the atlas_Field,
atlas_FieldSet and atlas_Metadata objects.

After having defined all the data needed for this example, we initialize the Atlas
library as usual and we define two fields, one called field_pressure that, for
instance, will contain the pressure and the other one called field_wind that will
for example contain the velocity of the wind in two orthogonal directions.

48 Chapter 6 Create Fields and Field Sets

How does the creation of a field work?

On lines 17 and 18 we can see the construction of the two fields. We first need
to specify the name of the field (in our case 'pressure’ and 'wind’), then we need
to specify the type of the data stored into the fields (in our case double precision
numbers) and finally we need to provide the dimension of the field. Note that we
allow multidimensional fields up to 6 dimensions (this number can be extended if
required)!

Tip

In a field we can only store numbers - no strings or characters! In
particular, we support integers, float types and double types.

Once the fields are defined we need to access the data and give them some values.
This task can be achieved by using the code on lines 23 and 24, where we access
the data of the two fields by two pointers pressure and wind, respectively. We
successively prescribe some values to these two pointers (see lines 27 to 31). This
step automatically updates what is stored in the two field objects, field_pressure
and field wind.

The work for defining the two fields is almost completed. We can add just one
more little feature - one or more descriptors. This task is performed on lines 34 to
39, where we use the metadata object to set the units of our fields and retrieve
them through the functions, set and get, respectively.

These two fields are fully functional and can be used for our specific application.
However, we may want to encapsulate several fields into one object. This task can
be achieved by using the object atlas_FieldSet, as show on lines 40 to 42, where
we define the field set and we add the two fields into it.

Any field can also be retrieved from a field set by using the code on lines 45 and
46, where we ask for the field 'pressure’ and the field 'wind’ to be retrieved by two
new atlas_Field objects.

Note

It is possible to retrieve a Field from a FieldSet either by using the
name of the field or by using the number identifying it. In our example,
field_pressure assumes id=1 (since stored first), while field_wind
assumes id=2 (since stored second).

6.2 Fortran version 49

After having defined the field set, we print some useful information regarding
the fields (for the sake of brevity we print just some information regarding the
field_wind - the information regarding the field_pressure can be obtained in
an identical way). In particular, we print the name, the size and the metadata
associated to the field_wind (see lines 51 to 55). We then extract its rank, shape
and dimensions in bytes (see lines 57 to 66). We finally print type of the data
stored in the field (see lines 67 and 70).

On lines 73 to 78 we also print the values of one element per each field and we
finalise the field objects on lines 81 and 82 (thus releasing the memory).

Note that finalising the atlas_Field objects is enough to also finalise atlas_FieldSet
object; we need to explicitly finalise it as well to completely free the memory asso-
ciated to all the objects defined in this example (see line 83).

It is now possible to run this simple program typing the following text on the
terminal

./atlas_f-fields

This will produce the two fields described and a field set and will destroy them at
the end of the routine (thus releasing the memory). It will also print to the screen
some useful information regarding the fields. In particular, you should obtain an
output similar to the one below:

[0] (2016-03-15 T 17:16:01) (I) -- name = wind

[0] (2016-03-15 T 17:16:01) (I) -- size = 200

[0] (2016-03-15 T 17:16:01) (I) -- units = [m/s]

[0] (2016-03-15 T 17:16:01) (I) -- rank = 2

[0] (2016-03-15 T 17:16:01) (I) -- shape(1l) = 2

[0] (2016-03-15 T 17:16:01) (I) -- shape(2) = 100

[0] (2016-03-15 T 17:16:01) (I) -- shape = 2 100

(0] (2016-03-15 T 17:16:01) (I) -- memory = 1600.0000 bytes
[0] (2016-03-15 T 17:16:01) (I) -- type = real64

[0] (2016-03-15 T 17:16:01) (I) -- kind = 8

[0] (2016-03-15 T 17:16:01) (I) -- pressure(10) = 101325.0000
[0] (2016-03-15 T 17:16:01) (I) -- wind(1, 10) = 10.01000000
[0] (2016-03-15 T 17:16:01) (I) -- wind(2, 10) = 10.02000000

You can now play with the code in listing 6.2 to generate as many fields/field sets
as you want!

© 00 N O Uk W N -

OU O B B R B B B R B R D W W W W W W W WwWWh NNDNDNDDDDNDNDN DN = e e e e e
O O Uik WN = O OO Uk WNF OO UkRE W =O OO U b WwiN—=O

50 Chapter 6 Create Fields and Field Sets

6.3 Fields on a given Grid

6.3.1 C+-+ version

The listing 6.3 shows how to construct one field on a given grid. To see how to
create a generic field and a field set and how to use some additional functionalities

related to fields, please refer to section 6.1 above.

#include

#include

#include

#include

using atlas::atlas_init;

using atlas::atlas_finalize;
using atlas::Log;

using atlas::array::ArrayView;

using atlas::array::make_shape;
using atlas::field::Field;

using atlas::grid::Structured;
int main(int argc, char xargv[])
{

atlas_init (argc, argv);

int jnode = O0;

const double rpi = 2.0 * asin(1.0);

const double deg2rad = rpi / 180.;

const double zlatc = 0.0 * rpij;

const double zlonc = 1.0 * rpi;

const double zrad = 2.0 * rpi / 9.0;

double zdist, zlon, zlat;

Structured::Ptr grid(Structured::create() D)
const size_t nb_nodes = grid->npts();

Field::Ptr field_pressure(
Field::create<double>(, make_shape (nb_nodes)));

ArrayView <double,1> pressure(xfield_pressure);
for (size_t jlat =0; jlat < grid->nlat(); ++jlat)
{
zlat = grid->lat(jlat);
zlat = zlat * deg2rad;
for (size_t jlon =0; jlon < grid->nlon(jlat); ++jlon)
{
zlon = grid->lon(jlat, jlon);
zlon = zlon * deg2rad;
zdist = 2.0 * sqrt((cos(zlat) * sin((zlon-zlonc)/2)) *
(cos(zlat) #* sin((zlon-zlonc)/2)) +

sin((zlat-zlatc)/2) * sin((zlat-zlatc)/2));

pressure (jnode) = 0.0;
if (zdist < zrad)
{
pressure(jnode) = 0.5 * (1. + cos(rpi*zdist/zrad));
}

jnode = jnode+1;

52
53
54

55
56

57

58
59
60
61
62

6.3 Fields on a given Grid 51

}
Log::info () << << std::
endl;
Log::info () <<
<< field_pressure->bytes() * 1.e-9 << << std::
endl;
Log::info () << << std::
endl;
atlas_finalize();
return O;
}

Listing 6.3 Generating a field on a given grid using C++

On the first few lines of the code, we include the necessary header files for this
example. In particular, we include grids.h, Field.h. We then initialize the Atlas
library and define some constants needed to define the function we are going to
implement later in the code.

We then create a grid object and a field object. Note that we used a command-
line argument to decide what grid to use (see chapter 4 for more details on how to
create global grids).

On line 24, we define the grid using a command-line key that can be specified by
the user (see chapter 4 for more details on how to create global grids). On lines 27
and 28, we define the pressure field, while, on line, 30 we initialize the associated
ArrayView object, needed to manipulate and access the data inside the Field
object. From line 31 to line 50, we specify the a Gaussian-type (e.g. a hill) function
on our grid (specifically, the field is defined between line 43 and 47). We finally
close the program outputting on the screen the memory footprint of the field just
created. Note that we do not need to free the memory of the grid and field objects,
since it is automatically released at the end of the execution (in contrast to Fortran,
where we explicitly need to destroy the objects created).

It is now possible to run this simple program typing the following text on the
terminal

./atlas_c-fields-on-grid
This will produce a field (called pressure) defined on an octahedral grid that has

the shape of a hill or Gaussian-type function. The output on the screen should be
the memory footprint of the field created on the grid and it should be similar to

0~ O Uk W

33

52 Chapter 6 Create Fields and Field Sets

the one below:

memory field_pressure = 0.0338493 GB

Not a big deal for this grid!

You can now play with the command-line argument and generate different grids
and see the impact on the memory footprint of the pressure field.

6.3.2 Fortran version

The listing 6.4 shows how to construct one field on a given grid. To see how to
create a generic field and a field set and how to use some additional functionalities
related to fields, please refer to section 6.1 above.

program main

use, intrinsic :: iso_c_binding, only : c_double

use atlas_module

integer , parameter :: wp = c_double

real (wp), parameter :: rpi = 2.0_wp * asin(1.0_wp)
real (wp), parameter :: deg2rad = rpi / 180.

real (wp) :: zlatc = 0._wp * rpi

real (wp) :: zlonc = 1._wp * rpi

real (wp) :: zrad = 2. _wp * rpi / 9._wp
real (wp) :: zdist, zlomn, zlat

integer :: jnode

character (len=1024) :: string

character (len=32) :: gridID
type(atlas_grid_Structured) 1: grid

type (atlas_Field) :: field_pressure

real (wp), pointer :: pressure (:)

call atlas_init ()

gridID =
grid = atlas_grid_Structured(gridID)

field_pressure = atlas_Field(, atlas_real(wp), [grid¥npts()])
call field_pressure’data(pressure)

jnode = 1
do jlat=1,grid%nlat ()
zlat grid¥%lat (jlat)
zlat = zlat * deg2rad
do jlon=1,gridjnlon(jlat)
zlon = grid%lon(jlat, jlon)
zlon = zlon * deg2rad

zdist = 2. _wp * sqrt((cos(zlat) * sin((zlon - zlonc) / 2))**2 + &
& sin((zlat - zlatc) / 2)*%*2)

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

6.3 Fields on a given Grid 53

pressure (jnode) = 0. _wp
if (zdist < zrad) then
pressure(jnode) = 0.5_wp * (1._wp + cos(rpi * zdist / zrad))
endif
jnode = jnode + 1
enddo
enddo

write (string, x*)
call atlas_logkinfo(string)
write (string, *) , &
& field_pressurebytes()/1000000000.,
call atlas_loglinfo(string)
write (string, *)
call atlas_loglinfo(string)

call grid¥%final ()
call field_pressure/final ()

call atlas_finalize ()

end program main

Listing 6.4 Generating a field on a given grid using Fortran

On the first few lines of the code, we define the variables needed for this program.
In particular, we define some constants needed for the function we are going to
implement later in the code and we declare an atlas_grid_Structured grid object
and an atlas_Field object.

On lines 21 and 22 we define the grid using a command-line key that can be
specified by the user (see chapter 4), while on lines 24 and 25, we initialize the
pressure field. From line 28 to line 45, we specify the a Gaussian-type (e.g. a hill)
function on our grid (specifically, the field is defined on lines 39 to 42). We finally
close the program outputting on the screen the memory footprint of the field just
created. As usual, we also explicitly need to free the memory calling the function
final on the grid and field objects.

It is now possible to run this simple program typing the following text on the
terminal

./atlas_f-fields-on-grid
This will produce a field (called pressure) defined on an octahedral grid that has

the shape of a hill or Gaussian-type function. The output on the screen should be
the memory footprint of the field created on the grid and it should be similar to

54 Chapter 6 Create Fields and Field Sets

the one below:

memory field_pressure = 3.3849344000000003E-002 GB

Not a big deal for this grid!

You can now play with the command-line argument and generate different grids
and see the impact on the memory footprint of the pressure field.

CHAPTER 7

Using the function space objects

In this chapter, we show how to use the function space objects. These objects are
intended to interpret a given field. In particular, by using them on a given field,
we equip the field with the communication pattern (thus the Field knows about
parallelism), and it allows some simple operations on the field. The function space
objects that will be presented in this chapter are the following three:

e NodeColumns: It relates a given field to the underlying mesh, thus enabling
the field to parallel communication. It also allows some simple operations on
the Field, such as calculating minimum and maximum values, going from a
local (to a parallel partition) to a global indexing and viceversa, etc.

e StructuredColumns: It relates a given field to the underlying structured
grid, thus enabling the field to parallel communication. It also allows similar
operations as the NodeColumns function space, such as going from a local to
a global indexing and viceversa.

e Spectral: It allows the spectral representation of a Field (no relation to a
grid or a mesh here!). The parallelisation in this case is achieved through the
Trans library.

For each of the function spaces presented in the following, we show both the C++
and Fortran version.

7.1 NodeColumns

For this example, given the length of the code, we divide the code listings into four
different pieces, each of which will highlight different functionalities of the function

55

56

Chapter 7 Using the function space objects

space.

7.1.1

C++ version

Construction of Fields

The listing 7.1 shows how to construct the function space nodes of type
NodeColumns starting from a mesh. In particular, we first initialize the Atlas
library and we define a global structured grid (see lines 21, 24 and 25).
Using this grid, we then construct the mesh (see lines 28 and 29) and we
get the number of nodes of the mesh (see line 33). On line 36, we define
another integer that is used to construct three-dimensional fields if necessary.
Specifically, this integer is intended to constitute the number of vertical levels
required. Finally, on lines 39 and 40, we define the function space nodes .
Note that we pass two arguments here: the first is the mesh, while the second
is the halo. A halo is defined as an extra layer of ghost elements that is
required, for instance, to calculated derivatives when a larger stencil is needed.
In this case, we just asked for one extra layer of ghost elements (i.e. Halo(1)).
Using the function space nodes just generated, we create various fields to
highlight the different existing possibilities.

From line 43 to 46, we define two scalar fields (e.g. pressure, wind velocity
magnitude, etc.). The first field is two-dimensional since it does not specify
any vertical level. In addition, its dimensions automatically correspond to
the number of nodes present in the mesh (i.e. we do not have to specify its
dimensions!), because the field is constructed using the function space. Also,
by using the function space, we automatically enable the field to parallel
computation.

From line 47 to 50, we define two vector fields (e.g. wind velocity, etc.).
Again, the first field is purely two-dimensional, while the second contains
the vertical direction through the parameter nb_levels, that represents the
number of vertical levels.

Finally, from line 51 to 54, we show an example on how to construct two
tensor fields, the first two-dimensional and the second three-dimensional. The
same observations done before for scalar and vector fields hold also in this
case.

O~ O U WK -

#include
#include
#include
#include
#include
#include
#include
#include

7.1 NodeColumns 57

9|#include

10| #include

11

12| using atlas::array::ArrayView;

13| using atlas::array::make_shape;

14| using atlas::atlas_finalize;

15| using atlas::atlas_init;

16| using atlas::field::Field;

17| using atlas::field::FieldSet;

18| using atlas::field::global;

19| using atlas::functionspace::NodeColumns;

20| using atlas::gidx_t;

21l|using atlas::grid::Structured;

22| using atlas::Log;

23| using atlas::mesh::Halo;

24| using atlas::mesh::Mesh;

25| using atlas::output::Gmsh;

26

27| int main(int argc, char xargv[])

28| {

29 atlas_init (argc, argv);

30

31 // Generate global classic reduced Gaussian grid
32 Structured::Ptr grid(Structured::create() D)
33

34 // Generate mesh associated to structured grid

35 atlas::mesh::generators::Structured meshgenerator;
36 Mesh::Ptr mesh (meshgenerator.generate (*xgrid));
37

38 // Number of mnodes in the mesh

39 // (different from number of points on a grid!)

40 size_t nb_nodes = mesh->nodes().size();

41

42 // Number of wvertical levels required

43 size_t nb_levels = 10;

44

45 // Generate functionspace assoctiated to mesh

46 NodeColumns::Ptr fs_nodes(new NodeColumns (*mesh, Halo (1)));
47

48 // Note on field gemeration

49 Field::Ptr field_scalari(

50 fs_nodes->createField<double >())

51 Field::Ptr field_scalar2(

52 fs_nodes->createField<double >(, nb_levels));
53 Field::Ptr field_vectori(

54 fs_nodes->createField<double >(, make_shape(2)));
55 Field::Ptr field_vector2(

Listing 7.1 Functionspace NodeColumns usage (1) using C++

Definition /visualization of a scalar Field

In listing 7.2, we show the effective construction of a scalar field. We use the
same function adopted in section 6.3, however, in this case, the function is
not defined on a grid but the mesh through the function space nodes. This

58

0 g O U W

W W W WRNNDNDNDDNDDDNDNNDNRF H R~ = = e
WNHFH OO U R WNFE OO U B WwNn—=O©

Chapter 7 Using the function space objects

also allows us to visualize the function in gmsh.

From line 3 to 8, we define some variables needed for the function that will be
generated. On line 11, we define the ArrayView object on the two-dimensional
scalar field defined in listing 7.1. On line 12, we extract the implicitly defined
lonlat object - this step is particularly important since allows us to have
access to all the coordinates of the nodes in our mesh, order in a ’lonlat
fashion’ (where the first dimension, 0, represents the longitudes, while the
second, 1, represents the latitudes). From line 14 to 28, we define the function,
a Gaussian-type (hill) function - note that the function is now defined on the
number of nodes of the mesh (not on the number of points of the grid as in
section 6.3!)

Warning

Note that the number of points of a grid is different from the
number of nodes of a mesh!

From line 31 to 34, we finally write the mesh and the field in a gmsh format,
so that we can visualize it!

Field::Ptr field_vector2(
fs_nodes->createField<double >(, nb_levels,
make_shape (2)));
Field::Ptr field_tensoril(

fs_nodes->createField<double >(, make_shape(2,2)));
Field::Ptr field_tensor2(
fs_nodes->createField<double >(, nb_levels,

make_shape (2,2)));
VE SR 4
// Variables for scalarl field definition
const double rpi = 2.0 * asin(1.0);

const double deg2rad = rpi / 180.;
const double zlatc 0.0 * rpi;

const double zlonc = 1.0 * rpi;

const double zrad = 2.0 * rpi / 9.0;
double zdist, zlon, zlat;

// Retrieve lonlat field to calculate scalarl function
ArrayView <double,1> scalarl(xfield_scalarl);
ArrayView <double,2> lonlat (mesh->nodes().lonlat());
for (int jnode = 0; jnode < nb_nodes; ++jnode)
{

zlon = lonlat(jnode,0) * deg2rad;

zlat lonlat (jnode ,1) * deg2rad;

zdist = 2.0 *x sqrt((cos(zlat) * sin((zlon-zlonc)/2)) *
(cos(zlat) * sin((zlon-zlonc)/2)) +
sin((zlat-zlatc)/2) * sin((zlat-zlatc)/2));

scalarl(jnode) = 0.0;
if (zdist < zrad)
{

scalarl(jnode) = 0.5 * (1. + cos(rpi*zdist/zrad));

34
35

7.1 NodeColumns 59

3

Listing 7.2 Functionspace NodeColumns usage (2) using C++

Parallel management

[\

In listing 7.3, we show some operations related to the parallel behaviour
of the function space. One of the most important operations from this
perspective is HaloExchange (see line 3). This operation allows the correct
exchange of information across different parallel partitions, when, for instance,
calculating derivatives. A useful command to verify that this operation (or
other operations) has not corrupted the data is the one reported on line 4,
checksum. This prints a unique identifier for the object that is being passed
as an argument. If anything in the object changes, this identifier will also
change, permitting the identification of a possible unwanted data corruption.
Note also that when printing to the screen this identifier, we access the MPI
rank through eckit.

On line 8, we define a global field, field_global. This, even if the job we
are running is parallel, is defined on one task only. A global field can be
particularly useful for input/output purposes! Note also that the construction
of the global field is based on the existing scalar field - i.e. the global field
assumes the same characteristics of the scalar field, with the only exception
that it is defined on one task only.

On line 11, we apply the gather operation to the global field. Note that the
first argument is the input (in our case field_scalarl), while the second
argument is the output (in our case field_global).

We successively print to the screen the number of local mesh nodes per
parallel partition, the number of points of the grid and the number of nodes
of the global field.

On line 24, we perform the opposite of the gather operation, scatter. As
for the gather operation, the first argument is the input and the second the
output.

From line 27 to 29, we perform an additional HaloExchange, and check the
integrity of our field_scalarl after all the operations performed using it!
Finally, from line 32 to 36, we show how checksum can be applied also to
the FieldSet object.

}

// Write mesh and field in gmsh format for visualization

60

0 g O Ut

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Chapter 7 Using the function space objects

Gmsh gmsh ();
gmsh.write (¥mesh) ;
gmsh.write(xfield_scalarl);

V4 SR V4

// Halo ezchange

fs_nodes->haloExchange (xfield_scalarl);

std::string checksum = fs_nodes->checksum(*field_scalarl);
Log::info () << checksum << std::endl;

// Create a global field
Field::Ptr field_global(
fs_nodes->createField(, *field_scalarl, global()));
// Gather operation
fs_nodes->gather (*field_scalarl, *field_global);

Log::info () <<

<< fs_nodes->nb_nodes () << std::endl;
Log::info () <<

<< grid->npts () << std::endl;
Log::info () <<

<< field_globa1—>shape(0) << std::endl;

// Scatter operation
fs_nodes->scatter (xfield_global, *field_scalarl);

// Halo exzchange and checksum
fs_nodes->haloExchange (xfield_scalarl);
checksum = fs_nodes->checksum(*field_scalarl) ;
Log::info () << field_scalarl->name () <<

<< checksum << std::endl;

// FieldSet checksum
FieldSet fields;

Listing 7.3 Functionspace nodes usage (3) using C++

Simple operations

In listing 7.4, we show some simple operations that can be performed using the
nodes function space. Specifically, on lines 8 and 9 we compute the minimum
and maximum values of our field_scalarl - note that the function space
knows about the parallelisation, therefore there is no need to do anything
else to obtain the correct minimum and maximum values. This will also be
true for the other operations described below.

On lines 14 and 15, we again calculate the minimum and the maximum values
of our field but, in this case, we also retrieve the position of these values
through the global index of the mesh nodes.

On line 22 and 27, we calculate the sum of all the values of our field present
in the mesh. The two approaches should return the same number except for
possible round-off errors related to the mesh partitioning.

0~ O Uk W

B W W W W W W W WWERNDNDDDNDDNDNDNDNDL = = = =
O OO N U R WNRFEF OO UUR WNFEOWOWOWO U R WNR~OO

>
N =

7.1 NodeColumns 61

Finally, on line 32 and 36, we compute the mean value of our field and its
standard deviation. Note that the mean and the standard deviation are
normalised with respect to the total number of nodes present in the mesh.

It is also important to observe that we have used a different approach than
cout to print the values of the quantities just calculated to the screen. In
particular, we used the Log::Info() utility of Atlas, that will be better
explained in section part 2.7.2, of this user-guide. On line 42, we finalize the
library as usual.

FieldSet fields;
fields.add(xfield_scalarl);
fields.add(xfield_vectorl);

checksum = fs_nodes->checksum(fields) ;
Log::info () << << checksum << std::endl;
V4 SR V4

// Operations

size_t N;

gidx_t gidx_min, gidx_max;

double min, max, sum, mean, stddev;

// Minimum and mazimum
fs_nodes->minimum(*field_scalarl, min);
fs_nodes->maximum(*field_scalarl, max);
Log::info () << << min << std::endl;
Log::info () << << max << std::endl;

// Minimum and mazimum + location
fs_nodes->minimumAndLocation(*field_scalarl, min, gidx_min);
fs_nodes->maximumAndLocation(*xfield_scalarl, max, gidx_max);

Log::info () << << min <<

<< << gidx_min << std::emndl;
Log::info () << << max <<

<< << gidx_max << std::emndl;

// Summation
fs_nodes->sum(*field_scalaril, sum, N);
Log::info () << << sum

<< << N << std::endl;

// Order independent (from partitioning) summation
fs_nodes->orderIndependentSum(*field_scalarl, sum, N);
Log::info () << << sum

<< << N << std::endl;

// Average over number of nodes

fs_nodes->mean(*field_scalarl, mean, N);

Log::info () << << mean << << N << std::
endl;

// Average and standard deviation over number of mnodes

Listing 7.4 Functionspace nodes usage (4) using C+-+

62 Chapter 7 Using the function space objects

scalari Y
0 0.1 0.2 03 04 05 06 07 08 0.9 1 lz x
[B]

Figure 7.1 Gaussian-type field visualised in Gmsh

It is now possible to run this simple program by using a command-line argument
representing the keyword that identifies an Atlas predefined grid. For instance, we
can execute the following command line

./atlas_c-NodeColumns --grid 0128

This will produce an octahedral reduced Gaussian grid with 128 latitudes on one
hemisphere (i.e. 256 latitudes in total), that is then used to generate the mesh
and the nodes function space. These two will then be used to construct our
Gaussian-type (hill) scalar field. The mesh and the field are then written into two
.msh files. These can be easily opened using Gmsh and they should look like
figure 7.1. It will also print to the screen the following output:

[0] (2016-02-11 T 19:24:05) (I)
[0] (2016-02-11 T 19:24:05) (I)
to gmsh file ./mesh_info.msh

[0] (2016-02-11 T 19:24:05) (I)
[0] (2016-02-11 T 19:24:05) (I)
to gmsh file scalarl.msh

[0] (2016-02-11 T 19:24:05) (I)
de6c4bbf15bde3b75e3fe927a0e4904c
local nodes = 70912

grid points = 70144
field_global.shape(0) = 70144
de6c4bbf15bde3b75e3fe927a0e4904c
9d3b18735c8£114cf4£033204db73e78
[0] (2016-02-11 T 19:24:05) (I) -- min: O

[0] (2016-02-11 T 19:24:05) (I) -- max: 0.99981

writing mesh to gmsh file mesh.msh
writing field partition \

writing field partitiom...
writing field scalarl \

writing field scalarl...

7.1 NodeColumns 63

[0] (2016-02-11
[0] (2016-02-11
[0] (2016-02-11
[0] (2016-02-11

19:24:05) (I) -- min: 0, global_id =1

19:24:05) (I) -- max: 0.99981, global_id = 34809
19:24:05) (I) -- sum: 2872.24, nb_nodes = 70144
19:24:05) (I) -—- oi_sum: 2872.24, nb_nodes = 70144
[0] (2016-02-11 19:24:05) (I) -- mean: 0.0409478, nb_nodes = 70144
[0] (2016-02-11 19:24:05) (I) -- mean = 0.0409478, \
std_deviation: 0.1496, nb_nodes: 70144

HHHAaA49434

In the first few lines, we note that the code informs us that it is writing the mesh
into gmsh format as well as the field in gmsh format. Successively, we print the
first checksum, that is a string, the number of local (to partition) nodes, the total
number of grid points and the number of entries present in field_global. Note
how, for this non-parallel example the number of mesh points differs from the
number of grid points as mentioned earlier. We then print the other two checksum,
the first of them is identical to the one printed previously - i.e. field_scalarl has
not been corrupted! - while the second is different since it refers to a different object
- i.e. it refer to FieldSet . Finally, on the last few lines we plot the various minimum,
maximum, summation, average and standard deviation calculated using the nodes
function space operations. Note the additional verbosity of the Log::Info() Atlas
utility!

You can now try to generate different meshes and run it in parallel!

7.1.2 Fortran version

Construction of Fields

The listing 7.5 shows how to construct the function space nodes starting from
a mesh. In the first few lines, we define the variables needed for this example
- note in particular the definition of atlas_functionspace_NodeColumns and
atlas_mesh_Nodes. We then create a structured grid (see lines 48 and 49)
and the associated mesh (see lines 52 and 53). On line 45 we initialize the
library as usual, while, on line 56, we define the nodes function space - note
that we pass two arguments here: the first is the mesh, while the second is the
halo. A halo is defined as an extra layer of ghost elements that is required, for
instance, to calculate derivatives when a larger stencil is needed. In this case,
we just asked for one extra layer of ghost elements (i.e. halo_size = 1).

Using the function space nodes just generated, we create various fields to
highlight the different existing possibilities.

From line 59 to 62, we define two scalar fields (e.g. pressure, wind velocity
magnitude, etc.). The first field is two-dimensional since it does not specify
any vertical level. In addition, its dimensions automatically correspond to

64

0~ O Uk W~

AR R W W W W W W WWWWNNNNLDDNDNDNDNDNDNR R = B =
N = OO U WNRFE OO UUR WNFEOWOWWTO U WNR~EOO

Chapter 7 Using the function space objects

the number of nodes present in the mesh (i.e. we do not have to specify its
dimensions!), because the field is constructed using the function space. Also,
by using the function space, we automatically enable the field to parallel
computation.

From line 63 to 66, we define two vector fields (e.g. wind velocity, etc.).
Again, the first field is purely two-dimensional, while the second contains
the vertical direction through the parameter nb_levels, that represents the
number of vertical levels.

Finally, from line 67 to 70, we show an example on how to construct two
tensor fields, the first two-dimensional and the second three-dimensional. The
same observations done before for scalar and vector fields hold also in this
case.

program main

use, intrinsic iso_c_binding, only: c_double

use atlas_module

implicit none

integer , parameter wp = c_double
character (len=1024) string
character (len=1024) gridID
character (len=32) checksum

type (atlas_grid_Structured) grid
type(atlas_mesh) mesh

type (atlas_meshgenerator) meshgenerator
type (atlas_Output) gmsh

type (atlas_functionspace_NodeColumns) fs_nodes

meshnodes
field_scalaril
field_scalar?2

type(atlas_mesh_Nodes)
type (atlas_Field)
type(atlas_Field)

type (atlas_Field)
type(atlas_Field)
type (atlas_Field)
type(atlas_Field)
type (atlas_Field)
type (atlas_Field)
type (atlas_FieldSet)

field_vectorl
field_vector2
field_tensorl
field_tensor2
lonlatField
field_global
fields

integer nb_nodes, jnode
integer nb_levels = 10
integer halo_size = 1

type (atlas_Field) global, scal

real (wp), pointer scalarl (:)

real (wp), pointer lonlat (:,:)

real (wp) minimum, maximum
real (wp) sum, oisum

real (wp) mean, stddev

real (wp), allocatable minimumv (:), maximumv (:)
real (wp), allocatable sumv (:), oisumv(:)
real (wp), allocatable meanv (:), stddevv(:)
integer (ATLAS_KIND_GIDX) glb_idx

integer (ATLAS_KIND_GIDX), allocatable glb_idxv (:)

! Variables for scalarl field definition

real (wp), parameter rpi = 2. _wp * asin(1l._wp)

real (wp), parameter deg2rad = rpi / 180._wp

real (wp), parameter zlatc = 0._wp * rpi

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

7.1 NodeColumns 65

real (wp), parameter :: zlonc = 1._wp * rpi

real (wp), parameter :: zrad = 2._wp * rpi / 9._wp
real (wp) :: zdist, zlon, zlat;

call atlas_init ()

! Generate global classic reduced Gaussian grid
gridID =
grid = atlas_grid_Structured (gridID)

! Generate mesh assoctiated to structured grid
meshgenerator = atlas_meshgenerator_Structured()

mesh = meshgeneratory,generate (grid)

! Generate functionspace associated to mesh

fs_nodes = atlas_functionspace_NodeColumns (mesh, halo_size)

! Note on field gemeration

field_scalarl = fs_nodes)create_field(, &
& atlas_real (wp))

field_scalar2 = fs_nodes)create_field(, &
atlas_real (wp), nb_levels)

field_vectorl = fs_nodes)create_field(, &
& atlas_real(wp), [2])

field_vector2 = fs_nodes)create_field(, &
atlas_real (wp), nb_levels, [2])

field_tensorl = fs_nodes)create_field(, &
& atlas_real(wp), [2,2])

field_tensor2 = fs_nodes)create_field(, &

Listing 7.5 Functionspace atlas_functionspace_ NodeColumns usage (1) using Fortran

Definition /visualization of a scalar Field

In listing 7.6, we show the effective construction of a scalar field. We use the
same function adopted in section 6.3, however, in this case, the function is
not defined on a grid but the mesh through the function space nodes. This
also allows us to visualize the function in gmsh.

On lines 4 and 5, we define the number of nodes of the mesh using the nodes
function space object.

On line 8, we initialize the pointer scalarl associated to the two-dimensional
field_scalarl object defined in listing 7.1. On lines 9 and 10, we extract
the implicitly defined lonlat object - this step is particularly important
since allows us to have access to all the coordinates of the nodes in our mesh,
ordered in a ’'lonlat fashion’ (where the first dimension, 1, represents the
longitudes, while the second, 2, represents the latitudes). From line 12 to
24, we define the function, a Gaussian-type (hill) function - note that the
function is now defined on the number of nodes of the mesh (not on the
number of points of the grid as in section 6.3!)

66

W N =

0 g O Ut

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Chapter 7 Using the function space objects

Warning

Note that the number of points of a grid is different from the
number of nodes of a mesh!

On lines 27 and 28, we finally write the mesh and the field in a gmsh format,
so that we can visualize it!

field_tensor2 = fs_nodes)create_field(, &
atlas_real (wp), nb_levels, [2,2])

! Number of mnodes in the mesh

! (different from number of points on a grid!)
meshnodes = fs_nodes’%nodes ()

nb_nodes = fs_nodes%nb_nodes ()

! Retrieve lonlat field to calculate scalarl function
call field_scalari’data(scalaril)

lonlatField = meshnodes%lonlat ()

call lonlatField’%data(lonlat)

do jnode=1,nb_nodes
zlon = lonlat (1, jnode) * deg2rad
zlat = lonlat (2, jnode) * deg2rad

zdist = 2._wp * sqrt((cos(zlat) * sin((zlon-zlonc)/2._wp)) * &
& (cos(zlat) * sin((zlon-zlonc)/2._wp)) + &
& sin((zlat-zlatc)/2._wp) * sin((zlat-zlatc)/2._wp))

scalaril(jnode) = 0._wp;
if (zdist < zrad) then
scalari(jnode) = 0.5 _wp * (1. _wp + cos(rpi*zdist/zrad));
endif
enddo

! Write mesh and field in gmsh format for wisualization
gmsh = atlas_output_Gmsh(

Listing 7.6 Functionspace atlas_functionspace_ NodeColumns usage (2) using Fortran

Parallel management

In listing 7.7, we show some operations related to the parallel behaviour
of the function space. One of the most important operations from this
perspective is halo_exchange (see line 3). This operation allows the correct
exchange of information across different parallel partitions, when, for instance,
calculating derivatives. A useful command to verify that this operation (or
other operations) has not corrupted the data is the one reported on line 5,
checksum. This prints a unique identifier for the object that is being passed
as an argument. If anything in the object changes, this identifier will also
change, permitting the identification of a possible unwanted data corruption.

T W N~

0 3 O

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26

7.1 NodeColumns 67

Note also that when printing to the screen this identifier, we access the MPI
rank through the atlas_mpi_rank() function.

On line 11, we define a global field, field_global. This, even if the job we
are running is parallel, is defined on one task only. A global field can be
particularly useful for input/output purposes! Note also that the construction
of the global field is based on the existing scalar field - i.e. the global field
assumes the same characteristics of the scalar field, with the only exception
that it is defined on one task only.

On line 14, we apply the gather operation to the global field. Note that the
first argument is the input (in our case field_scalari), while the second
argument is the output (in our case field_global).

We successively print to the screen the number of local mesh nodes per
parallel partition, the number of points of the grid and the number of nodes
of the global field.

On line 22, we perform the opposite of the gather operation, scatter. As
for the gather operation, the first argument is the input and the second is
the output.

On lines 25 and 26, we perform an additional halo_exchange , and check the
integrity of our field_scalaril after all the operations performed using it!
Finally, from line 33 to 35, we show how checksum can be applied also to an
atlas_FieldSet object.

gmsh = atlas_output_Gmsh ()
call gmshy%write (mesh)
gmsh = atlas_output_Gmsh ()
call gmshywrite(field_scalarl)
/
! Halo exzchange
call fs_nodes’%halo_exchange(field_scalaril)

checksum = fs_nodes%checksum(field_scalaril)
write (string, *) checksum
call atlas_loglinfo(string)

! Create a global field
field_global = fs_nodesicreate_field(, field_scalarl, global
=.true.)

! Gather operation
call fs_nodes)gather (field_scalarl, field_global);

write (string, *) , fs_nodes’%nb_nodes ()
call atlas_logkinfo(string)

write (string, *) , grid¥%npts ()
call atlas_logkinfo(string)

write (string, *) , field_global’shape (1)
call atlas_loglinfo(string)

68

27
28
29
30
31
32
33
34
35
36
37
38
39

Chapter 7 Using the function space objects

! Scatter operation
call fs_nodes%scatter (field_global, field_scalarl)

! Halo exzchange and checksum

call fs_nodes’)halo_exchange(field_scalarl);
checksum = fs_nodesychecksum(field_scalari);
write (string, *) checksum

call atlas_logkinfo(string)

! FieldSet checksum
fields = atlas_FieldSet("")
call fields%add(field_scalaril);

Listing 7.7 Functionspace atlas_functionspace_ NodeColumns usage (3) using Fortran

Simple operations

In listing 7.8, we show some simple operations that can be performed using the
nodes function space. Specifically, on lines 5 and 6 we compute the minimum
and maximum values of our field_scalarl - note that the function space
knows about the parallelisation, therefore there is no need to do anything
else to obtain the correct minimum and maximum values. This will also be
true for the other operations described below.

On lines 12 and 15, we again calculate the minimum and the maximum values
of our field but, in this case, we also retrieve the position of these values
through the global index of the mesh nodes.

On lines 20 and 21, we calculate the sum of all the values of our field present
in the mesh. The two approaches should return the same number except for
possible round-off errors related to the mesh partitioning.

Finally, on lines 26 and 31, we compute the mean value of our field and
its standard deviation. Note that the mean and the standard deviation are
normalised with respect to the total number of nodes present in the mesh.

It is also important to observe that we have used a different approach than
the standard write to print the values of the quantities just calculated to
the screen. In particular, we used the atlas_log utility of Atlas, that will
be better explained in section part 2.7.2, of this user-guide.

Note also that from line 38 to line 48, we destroy all the objects of created in
the program in order to release the memory and on line 50 we finalize the
Atlas library.

1| call fields%add(field_scalari);

2| call fields’%add(field_global);

3| checksum = fs_nodes’checksum(fields) ;
4|write(string, *) checksum

7.1 NodeColumns 69

5| call atlas_logkinfo(string)

6| 1.

7| ! Operations

8

9| ! Minimum and maximum

10| call fs_nodes¥%minimum(field_scalarl, minimum)
11| call fs_nodes)maximum(field_scalarl, maximum)

12| write(string, *) ,minimum, , maximum;

13| call atlas_logi%info(string)

14

15

16| ! Minimum and mazxzimum + location

17| call fs_nodesy%minimum_and_location(field_scalarl, minimum, glb_idx)
18| write (string ,*) ,minimum, , glb_idx

19| call atlas_logikinfo(string)

20| call fs_nodesymaximum_and_location(field_scalarl, maximum, glb_idx)
21| write (string,*) ,maximum , , glb_idx

22| call atlas_loglinfo(string)

24| ! Summation and order indipedent summation

25| call fs_nodes’%sum(field_scalarl, sum)

26| call fs_nodesjorder_independent_sum(field_scalarl, oisum)
27| write (string ,*) , sum, , oisum

28| call atlas_loghinfo(string)

30| ! Average over number of modes

31| call fs_nodesmean(field_scalarl, mean)
32|write(string,*) , mean

33| call atlas_loghinfo(string)

35| ! Average and standard deviation over number of mnodes
36| call fs_nodes’%mean_and_standard_deviation (&

37 & field_scalarl, mean, stddev)

38| write(string,*) , mean

39| call atlas_loghinfo(string)

40| write (string ,*) , stddev

41| call atlas_logkinfo(string)

43| call grid %final ()

44| call mesh %final ()

45| call fs_nodes %final ()

46| call field_scalaril%final ()
47| call field_scalar2%final ()
48| call field_vectori’final ()
49| call field_vector2%final ()
50(call field_tensorl%final ()
51| call field_temnsor2%final ()
52| call field_global %final ()

Listing 7.8 Functionspace atlas_functionspace_ NodeColumns usage (4) using Fortran

It is now possible to run this simple program by using a command-line argument
representing the keyword that identifies an Atlas predefined grid. For instance, we
can execute the following command line

70 Chapter 7 Using the function space objects

scalari Y
0 0.1 0.2 03 04 05 06 07 08 0.9 1 lz x
[B]

Figure 7.2 Gaussian-type field visualised in Gmsh

./atlas_f-NodeColumns --grid 0128

This will produce an octahedral reduced Gaussian grid with 128 latitudes on one
hemisphere (i.e. 256 latitudes in total), that is then used to generate the mesh
and the nodes function space. These two will then be used to construct our
Gaussian-type (hill) scalar field. The mesh and the field are then written into two
.msh files. These can be easily opened using Gmsh and they should look like
figure 7.2. It will also print to the screen the following output:

[0] (2016-02-12 T 15:41:33) (I) -- Looking for \
MeshGeneratorFactory [Structured]

[0] (2016-02-12 T 15:41:34) (I) -- writing mesh \
to gmsh file mesh.msh

[0] (2016-02-12 T 15:41:34) (I) -- writing field \
field_scalarl to gmsh file scalarl.msh

[0] (2016-02-12 T 15:41:34) (I) -- writing field \
field_scalarl...

de6c4b5f15bde3b75e3fe927a0e4904c

local nodes = 70912
grid points = 70144
field_global.shape(l) = 70144

de6c4b5f15bde3b75e3fe927a0e4904c
9d3b18735c8£114c£4£033204db73e78

[0] (2016-02-12 T 15:41:34) (I) -- min = 0.0000000000000000 \
max = 0.99981015482709013
[0] (2016-02-12 T 15:41:34) (I) -- min = 0.0000000000000000 \

gidx = 1

7.2 StructuredColumns 71

[0] (2016-02-12 T 15:41:34) (I) -- max = 0.99981015482709013 \
gidx = 34809

[0] (2016-02-12 T 15:41:34) (I) -- sum = 2872.2433544940809 \
oisum = 2872.2433544940809

[0] (2016-02-12 T 15:41:34) (I) -- mean = 4.0947812421505490E-002
[0] (2016-02-12 T 15:41:34) (I) -- mean = 4.0947812421505490E-002
[0] (2016-02-12 T 15:41:34) (I) -- stddev = 0.14959959397019881

In the first few lines, we note that the code informs us that it is writing the mesh
into gmsh format as well as the field in gmsh format. Successively, we print the
first checksum, that is a string, the number of local (to partition) nodes, the total
number of grid points and the number of entries present in field_global. Note
how, for this non-parallel example the number of mesh points differs from the
number of grid points as mentioned earlier. We then print the other two checksum,
the first of them is identical to the one printed previously - i.e. field_scalarl
has not been corrupted! - while the second is different since it refers to a different
object - i.e. it refer to atlas_FieldSet. Finally, on the last few lines we plot the
various minimum, maximum, summation, average and standard deviation calculated
using the nodes function space operations. Note the additional verbosity of the
atlas_log Atlas utility!

You can now try to generate different meshes and run it in parallel!

7.2 StructuredColumns

7.3 Spectral

	Introduction
	Getting Started
	Download and installation
	General requirements
	Installation
	External third-party dependencies
	ECMWF third-party dependencies
	Atlas installation

	Inspecting your Atlas installation
	Using Atlas in your project
	C++ version
	Fortran version

	Design
	Grid
	Mesh
	Nodes
	Elements and Connectivity
	Mesh generation

	Field and FieldSet
	FunctionSpace
	Parallelisation
	Numerics
	Utilities
	Configuration
	Logging

	Theory
	fvm: Median-dual Finite Volume Method

	Core functionalities
	Create a Global Grid
	Structured Grids
	C++ version
	Fortran version

	Unstructured Grids

	Create a Mesh from a Grid
	C++ version
	Fortran version

	Create Fields and Field Sets
	Standalone Fields and Field Sets
	C++ version

	Fortran version
	Fields on a given Grid
	C++ version
	Fortran version

	Using the function space objects
	NodeColumns
	C++ version
	Fortran version

	StructuredColumns
	Spectral

