
Assimilation Algorithms
Lecture 3: 4D-Var

Mike Fisher

ECMWF

March 7, 2016

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 1 / 26

Outline

1 Strong Constraint 4D-Var: Derivation

2 Strong Constraint 4D-Var: Calculating the Cost and Gradient

3 The Incremental Method

4 Weak Constraint 4D-Var

5 Summary

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 2 / 26

Strong Constraint 4D-Var

So far, we have tacitly assumed that the observations, analysis and
background are all valid at the same time, so that H includes spatial,
but not temporal, interpolation.

In 4D-Var, we relax this assumption.

Let’s use G to denote a generalised observation operator that:
I Propagates model fields defined at some time t0 to the (various) times

at which the observations were taken.
I Spatially interpolates these propagated fields
I Converts model variables to observed quantities

We will use a numerical forecast model to perform the first step.

Note that, since models integrate forward in time and we do not have
an inverse of the forecast model, the observations must be available
for times tk ≥ t0.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 3 / 26

Strong Constraint 4D-Var

Formally, the 4D-Var cost function is identical to the 3D-Var cost
function — we simply replace H by G:

J(x) =
1

2
(xb − x)T (Pb)−1 (xb − x) +

1

2
(y − G(x))T R−1 (y − G(x))

However, it makes sense to group observations into sub-vectors of
observations, yk , that are valid at the same time, tk .

It is reasonable to assume that observation errors are uncorrelated in
time. Then, R is block diagonal, with blocks Rk corresponding to the
sub-vectors yk .

Write Gk for the generalised observation operator that produces the
model equivalents of yk . Then:

J(x) =
1

2
(xb − x)T (Pb)−1 (xb − x)

+
1

2

K∑
k=0

(yk − Gk(x))T R−1k (yk − Gk(x))

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 4 / 26

Strong Constraint 4D-Var

J(x) =
1

2
(xb − x)T (Pb)−1 (xb − x)

+
1

2

K∑
k=0

(yk − Gk(x))T R−1k (yk − Gk(x))

time
t
0

t
1

t
2

t
3

t
4 ... t

K

y
0

x
b

x
a

y
1

y
2

y
3

y
4 y

K

analysis window

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 5 / 26

Strong Constraint 4D-Var

Now, each generalised observation operator can be written as

Gk = HkMt0→tk

where:
I Mt0→tk represents an integration of the forecast model from time t0 to

time tk .
I Hk represents a spatial interpolation and transformation from model

variables to observed variables — i.e. a 3D-Var-style observation
operator.

The model integration can be factorised into a sequence of shorter
integrations:

Mt0→tk =Mtk−1→tkMtk−2→tk−1
· · ·Mt1→t2Mt0→t1

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 6 / 26

Strong Constraint 4D-Var

Let us introduce model states xk , which are defined at times tk .
I We will also denote the state at the start of the window as x0 (rather

than x, as we have done until now).

xk = Mt0→tk (x0)

= Mtk−1→tk (xk−1)

Then, we can write the cost function as:

J (x0, x1, · · · , xk) =
1

2
(xb − x0)T (Pb)−1 (xb − x0)

+
1

2

K∑
k=0

(yk −Hk(xk))T R−1k (yk −Hk(xk))

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 7 / 26

Strong Constraint 4D-Var

Note that, by introducing the vectors xk , we have converted an
unconstrained minimization problem:

xa = arg min
x

(J(x0))

into a problem with strong constraints:

xa = arg min
x0

(J(x0, x1, · · · xk))

where xk = Mtk−1→tk (xk−1) for k = 1, 2, · · · ,K

For this reason, this form of 4D-Var is called strong constraint 4D-Var.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 8 / 26

Strong Constraint 4D-Var

When we derived the 3D-Var cost function, we assumed that the
observation operator was perfect: y∗ = H(x∗).

In deriving strong constraint 4D-Var, we have not removed this
assumption.

The generalised observation operators, Gk , are assumed to be perfect.

In particular, since Gk = HkMt0→tk , this implies that the model is
perfect:

x∗k =Mtk−1→tk

(
x∗k−1

)
.

This is called the perfect model assumption.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 9 / 26

Strong Constraint 4D-Var

J (x0, x1, · · · xk) =
1

2
(xb − x0)T (Pb)−1 (xb − x0)

+
1

2

K∑
k=0

(yk −Hk(xk))T R−1k (yk −Hk(xk))

When written in this form, it is clear that 4D-Var determines the
analysis state at every gridpoint and at every time within the analysis
window.

I.e., 4D-Var determines a four-dimensional analysis of the available
asynoptic data.

As a consequence of the perfect model assumption, the analysis
corresponds to a trajectory (i.e. an integration) of the forecast model.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 10 / 26

Strong Constraint 4D-Var

In general, unconstrained minimization problems are easier to solve
than constrained problems.

To minimize the cost function, we write it as a function of x0:

J(x0) =
1

2
(xb − x0)T (Pb)−1 (xb − x0)

+
1

2

K∑
k=0

(yk − Gk(x0))T R−1k (yk − Gk(x0))

However, when evaluating the cost function, we can avoid repeated
integrations of the model by using the following algorithm:

I J := 1
2 (xb − x0)T (Pb)−1 (xb − x0)

I Repeat for k = 0, 1, · · · ,K :
I J := J + 1

2 (yk −Hk(xk))T R−1k (yk −Hk(xk)).
I xk+1 :=Mtk→tk+1

(xk).

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 11 / 26

Strong Constraint 4D-Var

As in 3D-Var, efficient minimization of the cost function requires us
to calculate its gradient.

Differentiating the unconstrained version of the cost function with
respect to x0 gives:

∇J(x0) = (Pb)−1 (xb − x0) +
K∑

k=0

GT
k R
−1
k (yk − Gk(x0))

Now, Gk is the Jacobian of Gk , and:

Gk = HkMt0→tk

= HkMtk−1→tkMtk−2→tk−1
· · ·Mt0→t1

Hence:

Gk = HkMtk−1→tkMtk−2→tk−1
· · ·Mt0→t1

⇒ GT
k = MT

t0→t1 · · ·M
T
tk−2→tk−1

MT
tk−1→tk

HT
k

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 12 / 26

Strong Constraint 4D-Var

Let us consider how to evaluate the second term of ∇J(x0):

K∑
k=0

GT
k R
−1
k (yk − Gk(x0)) =

HT
0 R
−1
0 (y0 − G0(x0))

+MT
t0→t1H

T
1 R
−1
1 (y1 − G1(x0))

+MT
t0→t1M

T
t1→t2H

T
2 R
−1
2 (y2 − G2(x0))

...

+MT
t0→t1M

T
t1→t2 · · ·M

T
tK−1→tK

HT
KR
−1
K (yK − GK (x0))

= HT
0 R
−1
0 (y0 − G0(x0)) + MT

t0→t1 [HT
1 R
−1
1 (y1 − G1(x0))

+MT
t1→t2 [HT

2 R
−1
2 (y2 − G2(x0)) + MT

t2→t3 [· · ·
· · ·+ MT

tK−1→tK
HT

KR
−1
K (yK − GK (x0))] · · ·]]]

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 13 / 26

Strong Constraint 4D-Var

Hence, to evaluate the gradient of the cost function, we can ues the
following algorithm:

I Set ∇J := 0.
I Repeat for k = K ,K − 1, . . . 1:

F ∇J := ∇J +HT
k (yk − Gk(xk))

F ∇J := MT
tk−1→tk∇J

I Finally add the contribution from the observations at t0, and the
contribution from the background term:
∇J := ∇J + HT

0 (y0 − G0(x0)) + (Pb)−1 (xb − x0).

Note that the gradient can be evaluated with one application of each
MT

tk−1→tk
for each k .

Each MT
tk−1→tk

corresponds to a timestep of the adjoint model.

Note that the adjoint model is integrated backwards in time, starting
from tK and ending with t0.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 14 / 26

The Incremental Method

We have seen how the 4D-Var cost function and gradient can be
evaluated for the cost of

I one integration of the forecast model
I one integration of the adjoint model

This cost is still prohibitive:
I A typical minimization will require between 10 and 100 evaluations of

the gradient.
I The cost of the adjoint model is typically 3 times that of the forward

model.
I The analysis window in the ECMWF system is 12-hours.

Hence, the cost of the analysis is roughly equivalent to between 20
and 200 days of model integration.

The incremental algorithm reduces the cost of 4D-Var by reducing the
resolution of the model.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 15 / 26

The Incremental Method

The incremental method can be applied to both 3D-Var and 4D-Var,
so let’s return to the general expression for the cost function:

J(x) =
1

2
(xb − x)T (Pb)−1 (xb − x) +

1

2
(y − G(x))T R−1 (y − G(x))

We introduce a linearization state x(m), and write

x = x(m) + δx(m)

The cost function can be written in terms of the increment δx(m), and
approximated by the quadratic function:

J(δx(m)) =
1

2

(
xb − x(m) − δx(m)

)T
(Pb)−1

(
xb − x(m) − δx(m)

)
+

1

2

(
d(m) − Gδx(m)

)T
R−1

(
d(m) − Gδx(m)

)
where d(m) = y − G

(
x(m)

)
.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 16 / 26

The Incremental Method

The incremental method treats the minimization of J as a sequence
of quadratic problems:

I Repeat for m = 0, 1, · · · until convergence:
I Minimize the quadratic cost function J(δx(m)).
I Set x(m+1) = x(m) + δx(m).

In this form, if the minimization converges, it will converge to the
solution of the original problem.

However, to reduce the computational cost of the analysis, we can
make a further approximation, and evaluate the quadratic cost
function at lower resolution:

J(δx̃(m)) =
1

2

(
x̃b − x̃(m) − δx̃(m)

)T (
P̃b

)−1 (
x̃b − x̃(m) − δx̃(m)

)
+

1

2

(
d(m) − G̃δx̃(m)

)T
R−1

(
d(m) − G̃δx̃(m)

)
where ·̃ indicates low resolution, and where x̃b, etc. are interpolated
from the corresponding full-resolution fields.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 17 / 26

The Incremental Method

x(0)

x(1)

x(2)

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 18 / 26

The Incremental Method

J(δx̃(m)) =
1

2

(
x̃b − x̃(m) − δx̃(m)

)T (
P̃b

)−1 (
x̃b − x̃(m) − δx̃(m)

)
+

1

2

(
d(m) − G̃δx̃(m)

)T
R−1

(
d(m) − G̃δx̃(m)

)

When the quadratic cost function is approximated in this way, 4D-Var
no longer converges to the solution of the original problem.

The analysis increments are calculated at reduced resolution and must
be interpolated to the high-resolution model’s grid.

Note, however that d(m) = y − G
(
x(m)

)
is evaluated using the

full-resolution versions of G and x(m).

I.e. the observations are always compared with the full resolution
linearization state. The reduced-resolution observation operator only
appears applied to increments: G̃δx̃(m).

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 19 / 26

Weak Constraint 4D-Var

The perfect model assumption limits the length of analysis window
that can be used to roughly 12 hours (for an NWP system).

To use longer analysis windows (or to account for deficiencies of the
model that are already apparent with a 12-hour window) we must
relax the perfect model assumption.

We saw already that strong constraint 4D-Var can be expressed as:

xa = arg min
x0

(J(x0, x1, · · · xk))

subject to xk = Mtk−1→tk (xk−1) for k = 1, 2, · · · ,K

In weak constraint 4D-Var, we define the model error as

ηk = xk −Mtk−1→tk (xk−1) for k = 1, 2, · · · ,K

and we allow ηk to be non-zero.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 20 / 26

Weak Constraint 4D-Var

We can derive the weak constraint cost function using Bayes’ rule:

p(x0 · · · xK |xb; y0 · · · yK) =
p(xb; y0 · · · yK |x0 · · · xK)p(x0 · · · xK)

p(xb; y0 · · · yK)

The denominator is independent of x0 · · · xK .

The term p(xb; y0 · · · yK |x0 · · · xK) simplifies to:

p(xb|x0)
K∏

k=0

p(yk |xk)

Hence

p(x0 · · · xK |xb; y0 · · · yK) ∝ p(xb|x0)

[
K∏

k=0

p(yk |xk)

]
p(x0 · · · xK)

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 21 / 26

Weak Constraint 4D-Var

p(x0 · · · xK |xb; y0 · · · yK) ∝ p(xb|x0)

[
K∏

k=0

p(yk |xk)

]
p(x0 · · · xK)

Taking minus the logarithm gives the cost function:

J(x0 · · · xK) = − log (p(xb|x0))−
K∑

k=0

log (p(yk |xk))−log (p(x0 · · · xK))

The terms involving xb and yk are familiar. They are the background
and observation terms of the strong constraint cost function.

The final term is new. It represents the a priori probability of the
sequence of states x0 · · · xK .

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 22 / 26

Weak Constraint 4D-Var

Given the sequence of states x0 · · · xK , we can calculate the
corresponding model errors:

ηk = xk −Mtk−1→tk (xk−1) for k = 1, 2, · · · ,K

We can use our knowledge of the statistics of model error to define

p(x0 · · · xK) ≡ p(x0; η1 · · · ηK)

One possibility is to assume that model error is uncorrelated in time.
In this case:

p(x0 · · · xK) ≡ p(x0)p(η1) · · · p(ηK)

If we take p(x0) = const. (all states equally likely), and p(ηk) as
Gaussian with covariance matrix Qk , we see that weak constraint
4D-Var adds the following term to the cost function:

1

2

K∑
K=1

ηTk Q
−1
k ηk

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 23 / 26

Weak Constraint 4D-Var

Hence, for Gaussian, temporally-uncorrelated model error, the weak
constraint cost function is:

J (x0, x1, · · · xk) =
1

2
(xb − x0)T (Pb)−1 (xb − x0)

+
1

2

K∑
k=0

(yk −Hk(xk))T R−1k (yk −Hk(xk))

+
1

2

K∑
K=1

ηTk Q
−1
k ηk

where ηk = xk −Mtk−1→tk (xk−1).

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 24 / 26

Weak Constraint 4D-Var

In strong constraint 4D-Var, we can use the constraints to reduce the
problem of minimizing a function of x0 · · · xK to that of minimizing a
function of the initial state x0 only.

This is not possible in weak constraint 4D-Var — we must either:
I minimize the function J (x0 · · · xK), or:
I express the cost function as a function of x0 and η1 · · · ηK .

Although the two approaches are mathematically equivalent, they
lead to very different minimization problems, with different
possibilities for preconditioning.

I It is not yet clear which approach is the best.
I Formulation of an incremental method for weak constraint 4D-Var also

remains a topic of research.

Finally, note that model error is unlikely to be temorally uncorrelated.
I Indeeed, initial attempts to account for model error in the ECMWF

analysis are concentrated on representing only the bias component of
model error (i.e. model error is assumed constant in time).

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 25 / 26

Summary

Strong Constraint 4D-Var is an extension of 3D-Var to the case where
observations are distributed in time.

The observation operators are generalised to include an integration of
the forecast model.

The model is assumed to be perfect, so that the four-dimensional
analysis state corresponds to an integration (trajectory) of the model.

The incremental method allows the computational cost to be reduced
to acceptable levels.

Weak Constraint 4D-Var allows the perfect model assumption to be
removed.

This allows longer windows to be contemplated.

However, it requires knowledge of the statistics of model error, and
the ability to express this knowledge in the form of covariance
matrices.

The statistical description of model error is one of the main current
challenges in data assimilation.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 3 March 7, 2016 26 / 26

	Strong Constraint 4D-Var: Derivation
	Strong Constraint 4D-Var: Calculating the Cost and Gradient
	The Incremental Method
	Weak Constraint 4D-Var
	Summary

