
Assimilation Algorithms
Lecture 2: 3D-Var

Mike Fisher

ECMWF

March 7, 2016

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 1 / 28

Outline

1 From Optimal Interpolation to 3D-Var

2 The Maximum Likelihood Approach

3 Minimization

4 Summary

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 2 / 28

From Optimal Interpolation to 3D-Var

In my last lecture, we derived the linear analysis equation

xa = xb + K (y −H(xb))

where

K = PbHT
[
HPbHT + R

]−1
≡
[
(Pb)−1 + HTR−1H

]−1
HTR−1

Optimal Interpolation (OI) applies direct solution methods to invert
the matrix

[
HPbHT + R

]
.

Data selection is applied to reduce the dimension of the matrix.

Direct methods require access to the matrix elements. In particular,
HPbHT must be available in matrix form.

This limits us to very simple observation operators.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 3 / 28

From Optimal Interpolation to 3D-Var

Iterative methods have significant advantages over the direct methods
used in OI.

They can be applied to much larger problems than direct techniques,
so we can avoid data selection.

They do not require access to the matrix elements.

Typically, to solve Ax = b, requires only the ability to calculate
matrix-vector products: Ax.

This allows us to use operators defined by pieces of code rather than
explicitly as matrices.

Examples of such operators include radiative-transfer codes, numerical
models, Fourier transforms, etc.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 4 / 28

Example: Conjugate Gradients
To solve Ax = b, where A is real, symmetric and positive-definite:

r0 := b− Ax0 p0 := r0 k := 0

repeat until rk+1 is sufficiently small

αk :=
rTk rk

pT
k Apk

xk+1 := xk + αkpk

rk+1 := rk − αkApk

βk :=
rTk+1rk+1

rTk rk
pk+1 := rk+1 + βkpk

k := k + 1

The result is xk+1

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 5 / 28

From Optimal Interpolation to 3D-Var

There are two ways to apply iterative methods to the linear analysis
equation, depending which expression we adopt for K:

For K = PbHT
[
HPbHT + R

]−1
we have:

xa = xb + PbHTz where
[
HPbHT + R

]
z = y −H(xb)

For K =
[
(Pb)−1 + HTR−1H

]−1
HTR−1, we have:

xa = xb+δx where
[
(Pb)−1 + HTR−1H

]
δx = HTR−1 (y −H(xb))

The first of these alternatives is called PSAS

The second (although it may not look like it yet) is 3D-Var

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 6 / 28

3D-Var

As we have seen, (linear) 3D-Var analysis can be seen as an
application of iterative solution methods to the linear analysis
equation.

Historically, 3D-Var was not developed this way.

We will now consider this alternative derivation.

We will need to apply Bayes’ theorem:

p(A|B) =
p(B|A)p(A)

p(B)

where p(A|B) is the probability of A given B, etc.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 7 / 28

Maximum Likelihood

We developed the linear analysis equation by searching for a linear
combination of observation and background that minimized the
variance of the error.

An alternative approach is to look for the most probable solution,
given the background and observations:

xa = arg max
x

(p(x|y and xb))

It will be convenient to define a cost function

J = − log (p(x|y and xb)) + const.

Then, since log is a monotonic function:

xa = arg min
x

(J(x))

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 8 / 28

Maximum Likelihood

Applying Bayes’ theorem gives:

p(x|y and xb) =
p(y and xb|x)p(x)

p(y and xb)

Now, p(y and xb) is independent of x.

A Priori we know nothing about x – all values of x are equally likely.

Hence, we can regard p(x)/p(y and xb) as independent of x, and
write:

p(x|y and xb) ∝ p(y and xb|x)

Furthermore, if observation errors and backgound errors are
uncorrelated, then

p(y and xb|x) = p(y|x)p(xb|x)

⇒ J(x) = − log (p(y|x))− log (p(xb|x)) + const.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 9 / 28

Maximum Likelihood

The maximum likelihood approach is applicable to any probability
density functions p(y|x) and p(xb|x).

However, let us consider the special case of Gaussian p.d.f’s:

p(xb|x) =
1

(2π)N/2|Pb|1/2
exp

[
−1

2
(xb − x)T (Pb)−1 (xb − x)

]
p(y|x) =

1

(2π)M/2|R|1/2
exp

[
−1

2
(y −H(x))T R−1 (y −H(x))

]
Now, J(x) = − log (p(y|x))− log (p(xb|x)) + const.

Hence, with an appropriate choice of the constant const.:

J(x) =
1

2
(xb − x)T (Pb)−1 (xb − x) +

1

2
(y −H(x))T R−1 (y −H(x))

This is the 3D-Var cost function

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 10 / 28

Maximum Likelihood

J(x) =
1

2
(xb − x)T (Pb)−1 (xb − x) +

1

2
(y −H(x))T R−1 (y −H(x))

The maximum likelihood analysis corresponds to the global minimum
of the cost function

At the minimum, the gradient of the cost function (∇J(x) or ∂J/∂x)
is zero:

∇J(x) = (Pb)−1 (x− xb) + HTR−1 (H(x)− y) = 0

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 11 / 28

Maximum Likelihood

∇J(x) = (Pb)−1 (x− xb) + HTR−1 (H(x)− y) = 0

Now, if H is linear (or if we neglect second-order terms) then

H(x) = H(xb) + H(x− xb)

Hence: (Pb)−1 (x− xb) + HTR−1 (H(xb) + H(x− xb))− y) = 0

Rearranging a little gives:[
(Pb)−1 + HTR−1H

]
δx = HTR−1 (y −H(xb))

where δx = x− xb

This is exactly the equation for the minimum-variance analysis we
derived at the start of the lecture!

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 12 / 28

Maximum Likelihood

We have shown that the maximum likelihood approach is naturally
expressed in terms of a cost function representing minus the log of
the probability of the analysis state.

The minimum of the cost function corresponds to the maximum
likelihood (probability) solution.

For Gaussian errors and linear observation operators, the maximum
likelihood analysis coincides with the minimum variance solution.

This is not the case in general:

xML xMEAN

P
 (

x
 |

y
)

x

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 13 / 28

Maximum Likelihood

In the nonlinear case, the minimum variance approach is difficult to
apply.

The maximum-likelihood approach is much more generally applicable

As long as we know the p.d.f’s, we can define the cost function
I However, finding the global minimum may not be easy for highly

non-Gaussian p.d.f’s.

In practice, background errors are usually assumed to be Gaussian (or
a nonlinear transformation is applied to make them Gaussian).

I This makes the background-error term of the cost function quadratic.

However, non-Gaussian observation errors are taken into account. For
example:

I Directionally-ambiguous wind observations from scatterometers
I Observations contaminated by occasional gross errors, which make

outliers much more likely than implied by a Gaussian model.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 14 / 28

Minimization

In 3D-Var, the analysis is found by minimizing the cost function:

J(x) =
1

2
(xb − x)T (Pb)−1 (xb − x) +

1

2
(y −H(x))T R−1 (y −H(x))

This is a very large-scale (dim(x) ≈ 108) minimization problem.

The size of the problem restricts on the algorithms we can use.

Derivative-free algorithms (which require only the ability to calculate
J(x) for arbitrary x) are too slow.

This is because each function evaluation gives very limited
information about the shape of the cost function.

I E.g. a finite difference, J(x + δv)− J(x) ≈ δvT∇J(x), gives a single
component of the gradient.

I We need O(108) components to work out which direction is “downhill”.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 15 / 28

Minimization

Practical algorithms for minimizing the 3D-Var cost function require
us to calculate its gradient:

∇J(x) = (Pb)−1 (x− xb) + HTR−1 (H(x)− y)

The simplest gradient-based minimization algorithm is called steepest
descent:

I Let x0 be an initial guess of the analysis. Repeat the following steps for
k = 0, 1, 2, etc. until the gradient is sufficiently small:

I Define a descent direction: dk = −∇J(xk).
I Find a step αk , e.g. by line minimization of the function J(xk + αdk),

for which J(xk + αdk) < J(xk).
I Set xk+1 = xk + αdk .

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 16 / 28

Minimization

Steepest descent can work well
on very well conditioned
problems in which the
iso-surfaces of the cost function
are nearly spherical.

In this case, the steepest
descent direction points towards
the minimum.

For poorly conditioned problems,
with ellipsoidal iso-surfaces,
steepest descent is not efficient:

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 17 / 28

Minimization

Steepest Descent is inefficient because it does not use information
about the curvature (i.e. the second derivatives) of the cost function.

The simplest algorithm that uses curvature is Newtons method.

Newton’s method uses a local quadratic approximation:

J(x + δx) ≈ J(x) + δxT∇J(x) +
1

2
δxTJ ′′δx

Taking the gradient gives:

∇J(x + δx) ≈ ∇J(x) + J ′′δx

Since the gradient is zero at the minimum, Newton’s method chooses
the step at each iteration by solving:

J ′′δx = −∇J(x)

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 18 / 28

Minimization

Newton’s method:
I Start with an initial guess, x0.
I Repeat the following steps for k = 0, 1, 2, etc. until the gradient is

sufficiently small:
I Solve J ′′δxk = −∇J(xk).
I Set xk+1 = xk + δxk .

Newton’s method works well for cost functions that are well
approximated by a quadratic — i.e. for quasi-linear observation
operators.

However, it suffers from several problems. . .

There is no control on the step length ‖δx‖. The method can make
huge jumps into regions where the local quadratic approximation is
poor.

I This can be controlled using line searches, or by trust region methods
that limit the step size to a region where the approximation is valid.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 19 / 28

Minimization

Newton’s method requires us to solve J ′′δxk = −∇J(xk) at every
iteration.

Now, J ′′ is a ∼ 108 × 108 matrix! Clearly, we cannot explicilty
construct the matrix, or use direct methods to invert it.

However, if we have a code that calculates Hessian-vector products,
then we can use an iterative method (e.g. conjugate gradients) to
solve for δxk .

Such a code is call a second order adjoint. See Wang, Navon,
LeDimet, Zou, 1992 Meteor. and Atmos. Phys. 50, pp3-20 for
details.

Alternatively, we can use a method that constructs an approximation
to (J ′′)−1.

Methods based on approximations of J ′′ or (J ′′)−1 are called
quasi-Newton methods.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 20 / 28

Minimization

By far the most popular quasi-Newton method is the BFGS algorthm,
named after its creators Broyden, Fletcher, Goldfarb and Shanno.

The BFGS method builds up an approximation to the Hessian:

Bk+1 = Bk +
ykyTk
yksTk

− Bksk (Bksk)T

skBksTk

where sk = xk+1 − xk and yk = ∇J(xk+1)−∇J(xk).

The approximation is symmetric and positive definite, and satisfies

∇J(xj+1)−∇J(xj) = J ′′(xj+1 − xj) for j = 0, 1, · · · , k

There is an explicit expression for the inverse of Bk , which allows
Newton’s equation to be solved at the cost of O(Nk) operations.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 21 / 28

Minimization

The BFGS quasi-Newton method:
I Start with an initial guess at the solution, x0, and an initial

approximation of the Hessian (typically,B0 = I).
I Repeat the following steps for k = 0, 1, 2, etc. until the gradient is

sufficiently small:
I Solve the approximate Newton’s equation, Bkδxk = −∇J(xk), to

determine the search direction.
I Perform a line search to find a step αk for which for which

J(xk + αkδxk) < J(xk).
I Set xk+1 = xk + αkδxk .
I Generate an updated approximation to the Hessian: Bk+1.

As k increases, the cost of storing and applying the approximate
Hessian increases linearly.

Moreover, the vectors sk and yk generated many iterations ago no
longer provide accurate information about the Hessian.

It is usual to construct Bk from only the O(10) most recent iterations.
The algorithm is then called the limited memory BFGS method.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 22 / 28

Minimization

The methods presented so far apply to general nonlinear functions.

An important special case occurs if the observation operator H is
linear. In this case, the cost function is strictly quadratic, and the
gradient is linear:

∇J(x) = (Pb)−1 δx + HTR−1 (H(xb) + Hδx− y)

=
[
(Pb)−1 + HTR−1H

]
δx + HTR−1 (H(xb)− y)

In this case, it makes sense to determine the analysis by solving the
linear equation ∇J(x) = 0.

Since the matrix
[
(Pb)−1 + HTR−1H

]
is symmetric and positive

definite, the best algorithm to use is conjugate gradients. (The
algorithm was presented earlier in this lecture.)

A good introduction to the method can be found online: Shewchuk
(1994) “An Introduction to the Conjugate Gradient Method Without
the Agonizing pain”.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 23 / 28

Preconditioning

We noted that the steepest descent method works best if the
iso-surfaces of the cost function are approximately spherical.

This is generally true of all minimization algorithms.

In general, expressing the cost function directly in terms of x will not
lead to spherical iso-surfaces.

The degree of sphericity of the cost function can be measured by the
eigenvalues of the Hessian. (Each eigenvalue corresponds to the
curvature in the direction of the corresponding eigenvector.)

In particular, the convergence rate will depend on the condition
number:

κ =
λmax

λmin

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 24 / 28

Preconditioning

We can speed up the convergence of the minimization by a change of
variables χ = L−1(x− xb), where L is chosen to make the cost
function more spherical.

A common choice is L = (Pb)1/2. The cost function becomes:

J(χ) =
1

2
χTχ+

1

2
(y −H(xb + Lχ))T R−1 (y −H(xb + Lχ))

With this change of variables, the Hessian becomes:

J ′′χ = I + LTHTR−1HL (plus higher order terms)

The presence of the identity matrix in this expression guarantees that
the minimum eigenvalue is ≥ 1.

There are no small eigenvalues to destroy the conditioning of the
problem.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 25 / 28

Calculating the Gradient

To minimize the cost function, we must be able to calculate gradients.

If we precondition using L, the gradient (with respect to χ) is:

∇χJ(χ) = χ+ LTHTR−1 (y −H(xb + Lχ))

Typically, R is diagonal — observation errors are treated as being
mutually uncorrelated.

However, the matrices HT, LT and L are not diagonal, and are much
too large to be represented explicitly.

We must represent these as operators (subroutines) that calculate
matrix-vector products.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 26 / 28

Calculating the Gradient

Take H as an example. Each line of the subroutine that applies H
can be considered as a function hk , so that

H(x) ≡ hK (hK−1 (· · · (h1(x))))

Each of the functions hk can be linearized, to give the corresponding
linear function hk . Each of these is extremely simple, and can be
represented by a one or two lines of code.

The resulting code is called the tangent linear of H.

H(x) ≡ hKhK−1 · · ·h1x

The transpose, HT(x) ≡ hT
1 hT

2 · · ·hT
Kx, is called the adjoint of H.

Again, each hT
k is extremely simple — just to a few lines of code.

NB: there is a whole 1-hour lecture on tangent linear and adjoint
operators later in the course.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 27 / 28

Summary

We showed that 3D-Var can be considered as an iterative procedure
for solving the linear (minimum variance) analysis equation.

We also derived 3D-Var from the maximum likelihood principle.

The Maximum Likelihood approach can be applied to non-Gaussian,
nonlinear analysis.

We introduced the 3D-Var cost function.

We considered how to minimize the cost function using algorithms
based on knowledge of its gradient.

We looked at a simple preconditioning.

Finally, we saw how it is possible to write code that computes the
gradient.

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 2 March 7, 2016 28 / 28

	From Optimal Interpolation to 3D-Var
	The Maximum Likelihood Approach
	Minimization
	Summary

