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Using stochastic physics to represent model uncertainty

• Why represent model error in an ensemble forecast?

• What are the sources of model uncertainty?

• How do we represent model uncertainty?

• 2 stochastic physics schemes in the IFS

• Impact of stochastic physics schemes in the IFS:

• Medium-range ensemble (ENS)

• Seasonal forecast (S4)

• Towards process-level simulation of model uncertainty

2EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



• In a reliable ensemble, ensemble spread is a predictor of ensemble error

i.e. averaged over many ensemble forecasts,
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For a thorough discussion of this relationship:

Martin Leutbecher’s lectures



Ensemble reliability

• In an under-dispersive ensemble, 
𝑒  𝑥 ≫ 𝜎 𝑥

and ensemble spread does not provide a good 
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What happens when the ensemble includes no representation of model uncertainty?

• In an under-dispersive ensemble, 
𝑒  𝑥 ≫ 𝜎 𝑥

and ensemble spread does not provide a good estimate of error.



What happens with no representation of model uncertainties?

TL399/255, resolution change at D15, 20 members

Ensemble standard deviation (“Spread”)

For details of skill measures:

Martin Leutbecher’s lectures



What happens with no representation of model uncertainties?

TL399/255, resolution change at D15, 20 members

Probabilistic skill (CRPS)

For details of skill measures:

Martin Leutbecher’s lectures



Model uncertainty: where does it come from?

• Atmospheric processes parametrised in the model:



Model error: where does it come from?

• Other parametrised atmospheric processes? 

– Surface coupling

– Radiation-aerosol interactions

– …

• Other sources: 

– Dynamics / numerics

– Coupled system: land-surface / oceans / sea-ice

• Other sources: processes not captured by the underlying model?

– Atmosphere exhibits upscale propagation of kinetic energy (KE)

– Occurs at ALL scales: no concept of “resolved” and “unresolved” scales

– How can the model represent upscale KE transfer from unresolved to resolved scales?
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Model uncertainty: how to simulate it?

• What do errors due to model uncertainty look like?

• Can we characterize them: relative size and timescales associated with different sources?

• How can we represent them?

• Multi-model ensembles

• Multi-physics ensembles

• Perturbed parameter ensembles

• “Stochastic parametrisations”
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Stochastic physics schemes in IFS

• IFS ensemble forecasts (ENS and S4) include 2 model uncertainty schemes:

• Stochastically perturbed parametrisation tendencies (SPPT) scheme

• Stochastic kinetic energy backscatter (SKEB) scheme

• SPPT scheme: simulates uncertainty due to sub-grid parametrisations

• SKEB scheme: parametrises missing and uncertain upscale transfer of KE
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Stochastically Perturbed Parametrisation Tendencies (SPPT) scheme

• Initially implemented in IFS, 1998 (Buizza et al., 1999); revised in 2009:

• Simulates model uncertainty due to physics parameterisations by

• taking the net tendencies from the physics parametrisations:

𝑿 = 𝑋𝑈 , 𝑋𝑉 , 𝑋𝑇 , 𝑋𝑄

• and perturbing with multiplicative noise 𝑟 ∈ −1, +1 as:

𝑿′ = 1 + 𝜇𝑟 𝑿

where 𝜇 ∈ 0,1 tapers the perturbations to zero near the surface & in the stratosphere.
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coming from radiation schemes

gravity wave drag

vertical mixing

convection

cloud physics

Shutts et al. (2011, ECMWF Newsletter);  Palmer et al., (2009, ECMWF Tech. Memo.)



SPPT pattern

• 2D random pattern in spectral space:

– First-order auto-regressive [AR(1)] process for evolving spectral coefficients  𝑟

 𝑟 𝑡 + ∆𝑡 = 𝜙  𝑟 𝑡 + 𝜌𝜂 𝑡

where 𝜙 = exp  −∆𝑡 𝜏 controls the correlation over timestep ∆𝑡;

and spatial correlations (Gaussian) for each wavenumber define 𝜌 for random numbers, 𝜂

• Resulting pattern mapped into grid-point space 𝑟:

– clipped such that 𝑟 ∈ −1, +1

– same pattern is applied to 𝑇, 𝑞, 𝑢, 𝑣

– applied at all model levels to preserve vertical structures**

– **Except: tapered to zero at model top/bottom, to avoid:

• instabilities due to perturbations in the boundary layer; 

• perturbing stratospheric tendencies dominated by well-constrained clear-skies radiation
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• 2D random pattern, 𝑟:

– Time-correlations: AR(1) 

– Spatial-correlations: Gaussian

– Clipped such that 𝑟 ∈ −1, +1

• Applied at all model levels to preserve vertical structures**

**Except: tapered to zero at model top/bottom
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3 correlation scales:

i) 6 hours, 500 km, 𝜎 = 0.52

ii) 3 days, 1 000 km, 𝜎 = 0.18

iii) 30 days, 2 000 km, 𝜎 = 0.06

SPPT pattern



SPPT pattern
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i) 6 hours, 500 km, 𝜎 = 0.52

ii) 3 days, 1 000 km, 𝜎 = 0.18

iii) 30 days, 2 000 km, 𝜎 = 0.06

3 correlation scales:

SPPT pattern

(Note the differences in colour scales)
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SPPT pattern
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Stochastic Kinetic Energy Backscatter (SKEB) scheme

• Introduced into IFS, 2010:

• Attempts to simulate a process otherwise absent from the model –

upscale transfer of energy from sub-grid scales 

• Represents backscatter of Kinetic Energy (KE) by adding perturbations to 𝑈 and 𝑉
via a forcing term to the streamfunction:

𝐹𝜑 = 𝑏𝑅𝐷  1
2𝐹∗

where 

𝐷 is an estimate of the (smoothed) total (local) dissipation rate due to the model,

𝑏R is the backscatter ratio – a scaling factor,

𝐹∗ is a 3D evolving random pattern field.
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Shutts et al. (2011, ECMWF Newsletter); Palmer et al., (2009, ECMWF Tech. Memo.); 
Shutts (2005, QJRMS); Berner et al. (2009, JAS)



𝐹𝜑 = 𝑏𝑅𝐷  1
2𝐹∗

• 3D random pattern field 𝐹∗:

– First-order auto-regressive [AR(1)] process for evolving 𝐹∗

𝐹∗ 𝑡 + ∆𝑡 = 𝜙𝐹∗ 𝑡 + 𝜌𝜂 𝑡

where 𝜙 = exp  −∆𝑡 𝜏 controls the correlation over timestep ∆𝑡;

and spatial correlations (power law) for wavenumbers define 𝜌 for random numbers, 𝜂

₋ vertical space-(de)correlations: random phase shift of 𝜂 between levels
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SKEB scheme



SKEB perturbations

𝐹𝜑 = 𝑏𝑅𝐷  1
2𝐹∗

• 𝐷 is an estimate of sub-grid scale production of KE, and includes:

– 𝐷num = numerical dissipation from

• explicit horizontal diffusion (bi-harmonic, 2); and 

• estimate due to semi-Lagrangian interpolation error

– 𝐷con = estimated KE generated by updraughts and detrainment within sub-grid deep convection

• Note: as of the resolution upgrade (32 -> 19 km) in March 2016:

– New numerical diffusion operator is no longer consistent with the biharmonic diffusion assumed 

by SKEB (for 𝐷num) => numerical dissipation contribution has been deactivated
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How are the perturbation patterns determined?

• Characteristics of errors due to model uncertainty cannot easily be determined from 
observations:

• uncertain processes small-scale (space and time)

• lack of observational coverage

• Can attempt to use models: coarse-graining studies (e.g. Shutts and Palmer, 2007)

• take high-resolution model simulations as “truth” 

• average model fields and tendencies (or streamfunction) to a grid-resolution typical of the forecast 
model

• compare the contribution of “sub-grid” scales in the coarse-grained simulation with 
parametrisations in the forecast model

• coarse-graining studies were used to justify and inform scales in SPPT and SKEB
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IFS ensembles: ENS and System 4 (S4)

• ENS = ensemble prediction system for 

• medium-range forecasts (up to 15 days) and 

• monthly forecasts (up to 32 days) [Frederic Vitart’s lecture]

• S4 = seasonal forecasting system [Tim Stockdale’s lecture]

• up to 7 months

• Both forecast systems include representations of model uncertainty via SPPT and SKEB

• ENS:

• 1 control forecast + 50 perturbed members

• TCo639 (~19 km) resolution to day 15; TCo319 (~32 km) days 45

• 91 vertical levels, up to 0.01hPa
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Impact of SPPT and SKEB in ENS
Ensemble standard deviation (“Spread”)



Impact of SPPT and SKEB in ENS
Probabilistic skill (CRPS)



Impact of SPPT and SKEB in ENS

• Adding SPPT + SKEB perturbations:

• increases ensemble “spread” (= ensemble standard deviation),

i.e. ensemble members describe greater region of the parameter space

• some reduced ensemble mean errors

• SPPT has a much greater impact than SKEB

• In the extra-tropics:

• Experiments: perturbations in days 0-5 contribute most effect

• In the tropics:

• Experiments: effect of perturbations rapidly lost at all times
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Impact of SPPT and SKEB in S4

• System 4 (S4), November 2011: introduction of (revised) SPPT and SKEB

• Operational configuration:

• T255 (~80 km), 91 vertical levels (up to 0.01 hPa)

• Coupled ocean model: NEMOv3.0, 1 degree (~110 km), 42 vertical levels

• 51 members

• Initialised on 1st of each month

• Forecast lead times: to 7 months

• Recent work with S4 to assess impact of stochastic schemes

• For longer time-scales, consider impact in terms of:

• Noise-induced drift, i.e. change in model mean

• Noise-activated regime transition, e.g. Pacific-N. American region regimes
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• Recent work with S4 to assess impact of stochastic schemes:

• Hindcast period: 1981-2010

• Start dates: May, Aug & Nov

• Ensemble size: 51

• Verification of forecasts to lead times: 4-7 months

• Considers impact of SPPT + SKEB on:

• Systematic errors

• Madden-Julian Oscillation (MJO) statistics

• ENSO forecast quality

• Circulation regimes over the Pacific-North American region [Franco Molteni’s lecture]
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Impact of SPPT and SKEB in S4



Impact of SPPT and SKEB in S4: Systematic errors

• Activating SPPT + SKEB reduces some biases:

– Outgoing longwave radiation (OLR)

– Total cloud cover

– Total precipitation

– Zonal winds (850 hPa)

• Greatest improvements in the tropics: reduces overly active tropical convection

• SPPT is responsible for most of the difference

See Weisheimer et al. (2014, Phil. Trans. R. Soc. A)
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Impact of SPPT and SKEB in S4: Madden Julian Oscillation

Wheeler and Hendon Index: 

Projection of daily data on 2 dominant combined EOFs 

of OLR, u200 and u850 over 15°N-15°S

Weisheimer et al. (2014, Phil. Trans. R. Soc. A)
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Increased frequency of MJO events in most phases Key: 

ERA-I

stochphysOFF

System 4



Impact of SPPT & SKEB in S4: Increased amplitude of MJO events
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Impact of SPPT & SKEB in S4: ENSO forecast quality - Niño4 SSTs
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stochphysOFF

System 4

System 4 has:
 Reduced forecast errors
 Increased ensemble spread
 Improved correlation



Impact of SPPT & SKEB in S4: Pacific North America (PNA) circulation regimes
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Stochastic physics: summary

• Errors due to model uncertainty arise from unresolved and misrepresented processes

• finite-resolution of a discrete numerical model

• parametrisations use simplified, bulk methods to represent complex, multi-scale sub-grid processes

• Difficult to characterise sources of model uncertainty due to lack of observations

• Without representing model uncertainty, ensemble forecasts are under-dispersive

• Stochastic methods for representing model uncertainty improve ensemble reliability

• ECMWF ensembles include 2 stochastic physics schemes:

• SPPT: represents uncertainty due to sub-grid physics parameterisations

• SKEB: simulates upscale transfer of kinetic energy from unresolved scales

• Medium-range: increased ensemble spread, greater probabilistic skill

• Seasonal: reduction in biases; better representation of MJO, ENSO, PNA regimes
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Stochastic physics: brief outlook for IFS

• Aim: to improve the physical consistency

• Generate flux perturbations at the top of 
atmosphere (TOA) and surface that are consistent 
with tendency perturbations within the atmospheric 
column

• Conservation of water

• Remove ad hoc tapering in boundary layer and 
stratosphere

• Include multi-variate aspects of uncertainties
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Towards process-level model uncertainty representation



Stochastic physics: brief outlook for IFS

• Approach: 

Stochastically Perturbed Parametrisations (SPP)

(Ollinaho et al., submitted QJ, 2016)

• Embed stochasticity within IFS parametrisations

• Perturb parameters/variables directly

• Specify spatial/temporal correlations

• Target uncertainties that matter (level of 
uncertainty and impact)

• Require that stochastic schemes converge to 
deterministic schemes in limit of vanishing variance
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Towards process-level model uncertainty representation



Stochastically Perturbed Parametrisations (SPP) scheme

Stochastic perturbations are applied to unperturbed 
parameters / variables in the physics parametrisations,  𝜉𝑗:

𝜉𝑗 =  𝜉𝑗 exp 𝛹𝑗

where 
𝛹𝑗~𝒩 𝜇𝑗 , 𝜎𝑗

2

Development started with parameter perturbations to 
target cloudy-skies radiation

Now includes parameters/variables from:

• Turbulent diffusion and subgrid orography

• Cloud and large-scale precipitation

• Radiation

• Convection
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Towards process-level model uncertainty representation

(Ollinaho et al., submitted QJ, 2016)



• Standard deviation of 0-3h Temperature tendency

• SPP induces larger (smaller) tendency perturbations 
within (above) the boundary layer than SPPT

• Correlations between SPP and SPPT standard 
deviations are small at early lead times => two schemes 
are generating different perturbation structures

Based on 6 boreal winter cases; 

Unit (top panels): K/3h
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Towards process-level model uncertainty representation

Stochastically Perturbed Parametrisations (SPP) scheme

(Ollinaho et al., submitted QJ, 2016)
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