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Part I:   Analytic Formulations

Meteorology has a large portfolio of diverse analytic formulations of the 

equations of motion, which employ variety of simplifying assumptions while 

focusing on different aspects of atmospheric dynamics.

Examples include: shallow water equations, isosteric/isentropic models, 

hydrostatic primitive equations, incompressible Boussinesq equations, 

anelastic systems, pseudo-incompressible equations, unified equations,        

and fully compressible Euler equations.

Many of these equations can be written optionally in Eulerian or Lagrangian

reference frame and in terms of various dependent variables; vorticity, 

velocity or momentum for dynamics, and total energy, internal energy or 

entropy for thermodynamics.

However, with increasing computational power the non-hydrostatic (i.e., all-

scale) systems come into focus, thus reducing the plethora of options.
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Two reference frames

Eulerian  Lagrangian

The laws for fluid flow --- conservation of mass, Newton’s 2nd law, conservation of energy, and 2nd

principle of thermodynamics --- are independent on reference frames  the two descriptions must 

be equivalent, somehow.

(the archetype problem, AP)
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Fundamentals:

physics (re measurement)

physics (relating observations 

in the two reference frames)

math (re Taylor series)

Taylor , 1685-1731  

Newton, 1642-1727  

http://en.wikipedia.org/wiki/File:BTaylor.jpg
http://en.wikipedia.org/wiki/File:BTaylor.jpg
http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://mrnussbaum.com/pioneers/isaac_newton/&ei=H-JFVajCNLLd7Qa06ID4BA&bvm=bv.92291466,d.d2s&psig=AFQjCNEuMNHM1ALdRQ3Ri-gCwvW7__M7xA&ust=1430729630769013
http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://mrnussbaum.com/pioneers/isaac_newton/&ei=H-JFVajCNLLd7Qa06ID4BA&bvm=bv.92291466,d.d2s&psig=AFQjCNEuMNHM1ALdRQ3Ri-gCwvW7__M7xA&ust=1430729630769013
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Euler expansion formula, 

More math:

parcel’s volume evolution;

flow divergence, definition flow Jacobian

0 <  J  <  ∞, for the flow to 

be topologically realizable

and the rest is easy 

Leibniz,  1646-1716

Euler, 1707-1783 

http://www.google.pl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www-history.mcs.st-and.ac.uk/PictDisplay/Euler.html&ei=UAY2VZneEcmssAGH5ICoAQ&bvm=bv.91071109,d.bGg&psig=AFQjCNFucurt2_A8QmcvffkL5ym7BK5CDA&ust=1429690330845070
http://www.google.pl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www-history.mcs.st-and.ac.uk/PictDisplay/Euler.html&ei=UAY2VZneEcmssAGH5ICoAQ&bvm=bv.91071109,d.bGg&psig=AFQjCNFucurt2_A8QmcvffkL5ym7BK5CDA&ust=1429690330845070
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key tools for deriving conservation laws

mass  continuity

Lebesque1875-1941
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Elementary examples:

Shallow-water equations

anelastic system

(Szmelter & Smolarkiewicz, JCP, 2010)

See: Wedi & Smolarkiewicz, QJR, 2009, for discussion; and a special issue  of JCP, 2008, 

“Predicting Weather, Climate and Extreme Events” for an overview of computational meteorology 
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All leading weather and climate codes are based on the compressible Euler 

equations, yet much of knowledge about non-hydrostatic atmospheric 

dynamics derives from the soundproof equations  descendants of the 

classical, reduced incompressible Boussinesq equations

Euler, 1707-1783 Boussinesq, 1842-1929
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Why bother?  Handling unresolved acoustic modes, while insisting on large 

time steps relative to speed of sound, makes numerics of non-hydrostatic 

atmospheric models based on the compressible Euler equations demanding 

pressure and density solid lines, entropy long dashes, velocity short dashes 
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From compressible Euler equations to incompressible Boussinesq equations

3D momentum equations under gravity

mass continuity and adiabatic entropy equations 

perturbation about static reference (base) state:

momentum equation, perturbation form:

incompressible Boussinesq equations

for problems with small vertical scales and density perturbations:

Helmholtz, 

1821-1894

http://www.google.co.uk/url?sa=i&source=imgres&cd=&cad=rja&uact=8&ved=0CAwQjRw&url=http://www.nndb.com/people/445/000072229/&ei=05RHVa_PG87aat_ZgYgN&psig=AFQjCNF8Cpo5tm-1LQ1-AG4puomZxDcJvw&ust=1430840915702918
http://www.google.co.uk/url?sa=i&source=imgres&cd=&cad=rja&uact=8&ved=0CAwQjRw&url=http://www.nndb.com/people/445/000072229/&ei=05RHVa_PG87aat_ZgYgN&psig=AFQjCNF8Cpo5tm-1LQ1-AG4puomZxDcJvw&ust=1430840915702918
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Perturbation forms in the context of initial & boundary conditions

Take incompressible Boussinesq equations:

which also require initial conditions for pressure and density perturbations. Then consider an 

unperturbed ambient state, a particular solution to the same equations

subtracting the latter from the former gives the form

that takes homogeneous initial conditions for the perturbations about the environment ! 
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Perturbation forms in terms of potential temperature and Exner function



compressible Euler equations

F.M. Exner, 

1876-1930
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● The incompressible Boussinesq system is the simplest nonhydrostatic

soundproof system. It describes small scale atmospheric dynamics of 

planetary boundary layers, flows past complex terrain and shallow gravity 

waves, thermal convection and fair weather clouds.  

● Its extensions include the anelastic equations of Lipps & Hemler (1982, 

1990) and the pseudo-incompressible equations of Durran (1989, 2008). 

In the anelastic system the base state density is a function of altitude; in the 

pseudo-incompressible system the base state density is a (different) 

function of altitude, and the pressure gradient term is unabbreviated.

● In order to design a common approach for consistent integrations of 

soundproof and compressible nonhydrostatic PDEs for all-scale 

atmospheric dynamics, we manipulate the three governing systems into a

single form convenient for discrete integrations:
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Unified Framework, combined symbolic equations:

conservation-law forms 

gas law 
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Combined equations, conservation form:

Accounting for curvilinear coordinates:

 example  integration schemes 

specific vs. density variables

 recall “the archetype problem, AP”
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Global baroclinic instability; Smolarkiewicz, Kühnlein & Wedi (2014, J. Comput. Phys.) 

CMP,  2880 dt=300 s, 

wallclock time=2.0 mns

PSI,  2880 dt=300 s, 

wallclock time=2.3 mns,

ANL,  2880 dt=300 s, 

wallclock time=2.1 mns,

8 days, surface θ’, 

128x64x48 lon-lat grid, 

128 PE of Power7  IBM
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The role of baroclinicity

anelastic pseudoincompressible compressible
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CPS

PSI

ANL

1.5h, surface lnθ, 320x160 

Gal-Chen grid,

domain 120 km x 60 km

``soundproof’’ dt=5 s

``acoustic’’ dt=0.5 s 

320 PE of Power7  IBM
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Part II:      Integration Schemes

● Generalised forward-in-time (FT) nonoscillatory (NFT) integrators for all 

scale, all speed flows PDEs (anelastic, pseudo-incompressible, acoustic; semi-

implicit; flux-form Eulerian and semi-Lagrangian)

● Robust, variational Krylov-subspace solvers for generalised boundary value 

problems (BVP) of Poisson & Helmholtz type

Helmholtz, 

1821-1894

Poisson, 

1781-1840
Krylov, 

1863-1945

Richardson, 

1881-1953

http://www.google.co.uk/url?sa=i&source=imgres&cd=&cad=rja&uact=8&ved=0CAwQjRw&url=http://www.nndb.com/people/445/000072229/&ei=05RHVa_PG87aat_ZgYgN&psig=AFQjCNF8Cpo5tm-1LQ1-AG4puomZxDcJvw&ust=1430840915702918
http://www.google.co.uk/url?sa=i&source=imgres&cd=&cad=rja&uact=8&ved=0CAwQjRw&url=http://www.nndb.com/people/445/000072229/&ei=05RHVa_PG87aat_ZgYgN&psig=AFQjCNF8Cpo5tm-1LQ1-AG4puomZxDcJvw&ust=1430840915702918
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● Generalised forward-in-time (FT) nonoscillatory (NFT) integrators for the AP

Eulerian

Lagrangian (semi)

EUlerian/LAGrangian congruence
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Motivation for Lagrangian integrals
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Compensating 1st error term on the rhs is a responsibility of an FT advection scheme 

(e.g. MPDATA). The 2nd error term depends on the implementation of an FT scheme

forward-in-time temporal discretization:

Second order Taylor expansion about t=nδt  &  Cauchy-Kowalewski procedure 

Motivation for Eulerian integrals
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Given availability of a 2nd order  FT algorithm for the homogeneous problem (R≡0), 

a 2nd order-accurate solution  for an inhomogeneous problem with “arbitrary” R is:

“Banach principle”, an important tool for systems with nonlinear right-hand-sides:

Eulerian semi-implicit compressible algorithms 
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Schur complement (solar MHD scenario)

 thermodynamic/elliptic problems for “pressures” Φ

Schur, 1875-1941





semi-implicit  ``acoustic’’ scheme:

in some detail for compressible Euler PDEs 

(RE: Banach principle)

simple but computationally  unaffordable; example 

(RE: thermodynamic  pressure)
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CPI2,  2880 dt=300 s, 

wallclock time=2.0 mns

8 days, surface θ’, 

128x64x48 lon-lat grid, 

128 PE of Power7  IBM

CPEX,  432000 dt=2 s, 

wallclock time=178.9 mns
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elliptic boundary value problems (BVPs):

Poisson problem in soundproof models relies on the mass continuity equation

and …

diagonally preconditioned Poisson problem for pressure perturbation



(RE: elliptic  pressure)
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And how  does one solve this “thing” ?

Helmholtz problems for large-time-step compressible models also rely on mass continuity equation:

combine the evolutionary form of the gas law & mass continuity in the 

AP  for pressure perturbation, to then derive the Helmholtz problem
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Notion of variational Krylov-subspace solvers:

but for k=0,..,n-1  

pn=po + Σ γk Lk(ro) ;  

rn=ro + Σ γk Lk+1(ro)

and   

loop over k =0,..,n-1 

pk+1=pk +  δtk rk

rn+1=rk +  δtk L(rk)

with    

δtn= - <rn L(rn)>/<L(rn)L(rn)>    

should do as well; at least for

< L()>=<L()> and 

<  L()> < 0  for all  , 
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Notion of preconditioning:

The best asymptotic convergence rate one can get from plain CG methods is in 

the  inverse proportionality to (condition number )1/2  of  the problem at hand 
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



Preconditioners,  e ≈ P 
-1

(r), examples:

1)

2)

3)
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Non-symmetric preconditioned generalized conjugate residual scheme GCR(k):



ECMWF2016  Slide 34

A few remarks on boundary conditions:

LH CE
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Pseudo-incompressible solution on the reduced T159 Gaussian grid

Held-Suarez climate benchmark; day 80 vertical velocity at z=2.4 km 

Octahedral mesh built on the N255 reduced Gaussian grid

Trapped lee waves on a small planet; compressible solution
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Principal results

The research leading to these results has received funding from the European Research Council under 

the European Union’s Seventh Framework Programme (FP7/2012/ERC Grant agreement no. 320375) 

Soundproof and compressible nonhydrostatic models form complementary elements of  a general 

theoretical-numerical framework that underlies non-oscillatory forward-in-time (NFT) flow solvers

The respective PDEs are integrated using essentially the same numerics

The resulting flow solvers can be available in compatible Eulerian and semi-Lagrangian variants

The flux-form flow solvers readily extend to unstructured-meshes

P.K. Smolarkiewicz, C. Kühnlein, N.P. Wedi, A consistent framework for discrete integrations of soundproof 

and compressible PDEs of atmospheric dynamics, J. Comput. Phys. 263 (2014) 185-205

M. Kurowski, W.W. Grabowski, and P.K. Smolarkiewicz, Anelastic and compressible simulations of moist           

deep convection, J. Atmos. Sci. 71 (2014) 3767--3787

P.K. Smolarkiewicz, W. Deconinck, M. Hamrud, G. Mozdzynski, C. Kühnlein, J. Szmelter, N. Wedi,  A finite-

volume module for simulating global all-scale atmospheric flows, J. Comput. Phys. 314 (2016) 287-304 


