

Norwegian Meteorological Institute

Forecasting weather for military aviation

Espen Karlsen Ørland Meteorological Office (DMO) *Norwegian Meteorological Institute*

Norwegian Met. Institute

- · Est. 1866 to warn of severe weather
- Our mission: Protection of life and property
- ·Weather forecasting, climate monitoring and research
- ·Severe weather warnings
- Ocean and ice service
- ·Meteorological aviation services civil and military
- ·Emergency preparedness
- ·Collaborate on special services
- ·Commercial services

Figure 1. Geographical responsibility

International role

- •First in Europe to provide free weather and climate data to the population
- YR is the 5th largest website in the world
- •Capacity building with focus on weather and climate information in Bangladesh, Myanmar and Vietnam

Member of:

- The World Meteorological Organization (WMO)
- The European Centre for Medium Range Weather Forecasts (ECMWF)
- The European Organization for the Exploitation of
- Meteorological Satellites (EUMETSAT)

Ørland Weather Office

Photo: Ørland Weather Office is located in the third floor of the air traffic control tower. 338 sq. F-16 in front Photo credit: Kallestad, Gorm/Scanpix

Temperature and precipitation measurements since 1895, weather office since 18th October 1954.

Provides weather forecasts to the Norwegian air force, NATO and affiliates

- 338 sq. F16 jet fighters, from 2017: F-35.
- 330 sq. Westland Sea King; search and rescue helicopters
- 335 sq. Transport squadron, operates C-130J Hercules planes
- 717 sq. Electronic warfare, navigation control, VIP transport, operates Dassault DA-20 Jet Falcon
- AWACS Airborne Warning Control System; radar surveillance, command & control, modified Boeing 707
- Swiss AF F5 jet fighters.

Some local products

·Weather package (face to face presentation to pilots) includes:

- ·Analysis, radar image
- ·Significant weather charts (surface to tropopause)
- ·Airfield cross section
- ·Cloud distribution charts
- ·Wind maps

Local airfield forecast and observations (TAF, METAR & TREND)

TAF – Terminal Aerodrome Forecast

- 24 hr airfield forecast issued every 6 hours
- METAR «MÉTéorologie Aviation Regulière»
- Observation of airfield weather every 30 mins (day), or hour (night) TREND
 - 2 hour forecast attached to METAR

Figure 2, left: Example of significant weather chart (29.01.2016). The low pressure on the chart is the storm named 'Tor' by Norwegian Met. Inst./named 'Gertrude' by UK Met Office.

Right: Example of airfield cross-section (29.01.2016) from a weather package (as presented to the pilots). Note: Upper level winds above 5000 feet were excluded on this date, due to no scheduled activity by 338 sq.

Models & ECMWF data usage

- ECMWF data usage is currently sparse and limited to
- making significant weather charts for NATO AWACS missions with destinations outside the domain of the most commonly used models (Arome-MetCoop, Hirlam 8km & 12km)
- · Or for the occasion when a long range forecast is needed, typically only for local weather.
- Thus, ECMWF data is not used as much, because currently models with better horizontal and vertical resolution are available
 - By 11th march the Hirlam models will be phased out, and will in part be replaced by ECMWF data with ~9km horisontal resolution (IFS cycle 41r2).

·Use of ECMWF data in cooperation with the Arome MetCoop 2.5 km model is expected to increase.

Photo: 330 sq. Westland Sea King in operation during practice. Credit: Johan Wildhagen

Arome-MetCoop model
Based on Harmonie v. cy38h1.1
65 layers, 2.5 km horizontal resolution
Non-hydrostatic dynamics
Updated with boundary conditions from ECMWF every hour
Run every 6th hour (00,06,12 and 18UTC)
Post-processing of precipitation, clouds, temperature, wind and 'thunder'

Issues with military aviation forecasting

- Requires high precision on wind speed forecasting, in particular on runway cross wind directions, due to pilot and/or aircraft limitations
- · Forecasting convective weather, frequency and intensity of showers, in particular showers of snow due to their effect on horizontal and vertical visibility
- ·Fog and freezing fog
- ·Icina
- ·Wind shear, turbulence and mountain waves
- ·Wind in complex terrain (rescue helicopters)
- ·Cloud distributions in the horizontal and vertical from the surface to the tropopause
 - Once in the air, the jet fighter pilot mostly only cares about cloud distribution; "Can I see the ground?"
 - · Interpretation of model soundings is very frequently used

·Upper level haze; a phenomena identified by jet fighter pilots that greatly reduces horizontal visibility, but has little to no impact on vertical visibility.

surface, and usually underestimates wind speed. F-16 take off threshold on crosswind = 25KTS.

Will the wind speed exceed the threshold on take off time?

Figure 3. Model shows runway crosswind 240/20-25KTS at

Model data from Arome-MetCoOp 2.5 km model, dated january 28th, 18UTC.

Photo, upper left: F-16 landing with parachute in freezing fog, Ørland. Credit: Capt. Helge Hopen, Norwegian Air Force.

Bottom left: F-35 Lightning II at Luke Air Force Base. Credit: US Air Force.

Right: F-16 flying in formation above clouds. Credit: Morthen Hanche, Norwegian Air Force.

Some of my colleagues

Photo: From the weather office's stand in connection with its 60-year anniversary. From left to right: Espen Karlsen, John Furre, Elin Tronvoll, Lillian Drilen, Thor Bretting. Photo credit: Elin Tronvoll.