Forecast verification

.... a few comments

Anna Ghelli

anna.ghelli@ecmwf.int

Forecast quality versus forecast value

A forecast has high QUALITY if it predicts the observed conditions well according to some objective or subjective criteria.

Quality but no value

A forecast has VALUE if it helps the user to make a better decision.

Value but no quality

Verification goals and process

What are our goals with forecast evaluation?

Evaluate usefulness of forecasts

In general?

For specific users?

Improve ensemble and modeling system

Track changes in forecast performance over time

PROCESS

Start by determining

What are the questions we want to answer??

Impact forecasts

User-relevant verification - Aviation

Flight time error (FTE) = flight_time_{obs} - flight_time_{fcst}

Accurate measure of wind forecast accuracy *directly relevant to airlines*Calculated using the track that the aircraft actually took

Uses AMDAR observations from real flights rather than model analyses or radiosondes

dev.hirlam.fmi.fi/Tienpinta_OnlineVerif_Opt/

FMI

VARASTOT, SADE, KITKA

Tienpintamalli OnlineVerifiointi

EnnVesi EnnLumi EnnKuura EnnJää HavVesi HavLumi HavJää [mm]

EnnSade (int),vrk1:Tutka,vrk2-3:MetEd HavSade (kum)

EnnKitka HavKitka (min=0.10, max=0.82)

LÄMPÖTILA, KELITULKINTA

Tienpintamalli OnlineVerifiointi

EnnTtie EnnT2m EnnTD2m HavTtie1 HavTtie2 HavTilma HavTDilma EnnT2m EnnTD2m: Meteorologin editori

EnnKeli EnnKeli2 HavKeli1 HavKeli2

Enn: 1=kuiva 2=kostea 3=märkä 4=märkä 1umi 5=kuura 6=osittain jäinen 7=jäinen 8=1uminen Hav: 1=kuiva 2=kostea 3=märkä 4=märkä/suolattu 5=kuura 6=lumi 7=jää 8=tn.kostea/suolainen

Uncertainty in observations

As models improve, can no longer ignore observation error!

Remove observation bias errors where possible

Effects of *random* obs error on verification

"Noise" leads to poorer scores for deterministic forecasts

Ensemble forecasts have poorer reliability & ROC

What can we do?

Error bars in scatter plots

Quantitative reference to "gold standard"

Correct for systematic error in observations

RMSE – Ciach & Krajewski (Adv. Water Res., 1999)

Categorical scores – Briggs et al. (MWR, 2005), Bowler (MWR, 2006)

Multiple observation sources

Courtesy Beth Ebert

Model performance: HRES relative to ERA-I

EXTRA

Measure	Attribute evaluated	Comments			
Probability forecasts					
Brier score	Accuracy	Based on squared error			
Resolution	Resolution (resolving different categories)	ferent categories) Compares forecast category climatologies to overall climatology			
Reliability	Calibration				
Skill score	Skill	Skill involves <i>comparison</i> of forecasts			
Sharpness measure	Sharpness	Only considers distribution of forecasts			
ROC	Discrimination	Ignores calibration			
C/L Value	Value	Ignores calibration			
Ensemble distribution					
Rank histogram	Rank histogram Calibration Can be misleading				
Spread-skill	Calibration	Difficult to achieve			
CRPS	Accuracy Squared difference between forecast and observed distributions Analogous to MAE in limit				
IGN score	Accuracy	Local score, rewards for correct category; infinite if observed category has 0 density			

Traditional spatial verification

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (F_i - O_i)^2}$$

Observed

		yes	no
Predicted	yes	hits	false alarms
	no	misses	correct negatives

$$POD = \frac{hits}{hits + misses}$$

$$FAR = \frac{false\ alarms}{hits + false\ alarms}$$

$$TS = \frac{hits}{hits + misses + false alarms}$$

Verifying rare extreme values

Categorical scores

Metrics should reward hits, penalise misses and false alarms For rare events, traditional categorical scores like TS \rightarrow 0 New extremal dependence scores:

Event forecast	Event observed		
	Yes	No	Marginal total
Yes	а	b	a + b
No	С	d	c + d
Marginal total	a + c	b + d	a + b + c + d =n

$$H = a / (a+c)$$
, hit rate
 $F = b / (b+d)$, false alarm rate
 $p = (a+c) / n$, base rate
 $q = (a+b) / n$, relative frequency of
forecasted events

$$EDS = \frac{\log p - \log H}{\log p + \log H}$$

$$SEDS = \frac{\log q - \log H}{\log p + \log H}$$

$$EDI = \frac{\log F - \log H}{\log F + \log H}$$

$$SEDI = \frac{\log F - \log H - \log(1 - F) + \log(1 - H)}{\log F + \log H + \log(1 - F) + \log(1 - H)}$$

Scores

Root Mean Square Error:

$$E = \sqrt{\overline{\left(fc - an\right)^2}}$$

Bias:

$$BIAS = \overline{FC - OBS}$$

Mean Absolute Error:

$$MAE = \overline{|FC - OBS|}$$

Anomaly Correlation: $ACC = \frac{(fc - c)(an - c)}{\sqrt{A_{fc}A_{an}}}$ $A_{fc} = \overline{(fc - c)^2}$ $A_{an} = \overline{(an - c)^2}$

Measures accuracy
Range: 0 to infinity perfect score = 0

Measures bias
Range: -infinity to +infinity

perfect score = 0

Measures accuracy
Range: 0 to infinity perfect score = 0

Measures accuracy Range: -100% to 100% perfect score = 100%

