
© ECMWF January 28, 2016

Using DDT

Debugging programs with DDT

Peter Towers

HPC Systems Section

Peter.Towers@ecmwf.int

1HPCF - Debugging programs with DDT © ECMWF 2016

 DDT is a very popular interactive debugger

- Developed by Allinea Software in the UK

- Modern graphical user interface

- Highly scalable to large numbers of tasks/threads

 Cray provide a 2048 task licence

- No limit to threads per task

- Support from Cray backed up by Allinea

 Version 4.2.1 (default) and 5.0.1 installed

- Version 5 also called Allinea Forge

- Version 6 will be available from Cray later this year

 Version 4.2.2 also available on the latest desktops

- Uses the same licence

Allinea DDT

HPCF - Debugging programs with DDT © ECMWF 2016 2

 Examine sources

 Set breakpoints

- Pause at a line of source

- Conditional breakpoints supported

 Examine variables, Fortran modules, stack

 Set tracepoints

- Output values of variables at a line without pausing

 Set watchpoints

- Pause when a variable changes value

DDT Features

HPCF - Debugging programs with DDT © ECMWF 2016 3

 Step through execution line by line

- Step to the next line or into a function

- Step over a line

- Step out of a function

 Catch signals

- Segmentation violations

- Floating point exceptions

 Track and debug memory usage

- Record all memory allocations

- Find memory overwrites

 Examine message queues

 ………….

HPCF - Debugging programs with DDT © ECMWF 2016 4

DDT Features

 DDT uses the GNU Debugger (GDB) under the covers

 Compile with symbolic debug information turned on

 With CCE use

-g for debug info and no optimisation

-G1 or -G2 for debug info with optimisation

 With Intel use

-g for debug info

HPCF - Debugging programs with DDT © ECMWF 2016 5

Compilation

export DISPLAY=<your workstation>:0.0

module load ddt/5.0.1.3_42607

ddt –n ? –mpiargs ‘more aprun args’ a.out

For example

ddt –n 4 –mpiargs ‘–N 4 –ss –cc cpu –d 6’ a.out

Launching DDT in batch

HPCF - Debugging programs with DDT © ECMWF 2016 6

Simple Job Script

HPCF - Debugging programs with DDT © ECMWF 2016 7

#!/bin/ksh

#PBS -q np

#PBS -N ddtdemo

#PBS -j oe

#PBS -o job.out

#PBS -l EC_total_tasks=4

#PBS -l EC_threads_per_task=6

#PBS -l EC_hyperthreads=1

#PBS -l walltime=00:60:00

cd $HOME/Debug

module load ddt

export DISPLAY=juliet:0.0

export OMP_NUM_THREADS=6

ddt -n 4 -mpiargs '-ss -cc cpu -N 4 -d 6' ./hello_mpi

 TL159 running on 1 node

- Initially with 4 tasks x 6 threads

- Then with 24 tasks x 1 thread

 Latest RAPS14 benchmark code (CY41R2)

 Run in batch

 Selected screen shots from DDT follow in the
presentation material

 Now for the live demo…….

HPCF - Debugging programs with DDT © ECMWF 2016 8

Live Demo Using IFS

HPCF - Debugging programs with DDT © ECMWF 2016 9

Before launching executable

HPCF - Debugging programs with DDT © ECMWF 2016 10

Paused after MPI_INIT

HPCF - Debugging programs with DDT © ECMWF 2016 11

After selecting cnt4.F90 and setting a breakpoint at line 505

HPCF - Debugging programs with DDT © ECMWF 2016 12

Hitting the breakpoint

HPCF - Debugging programs with DDT © ECMWF 2016 13

At the breakpoint

HPCF - Debugging programs with DDT © ECMWF 2016 14

Setting a trace point at line 511 for JSTEP and ZT1 every 3rd step

HPCF - Debugging programs with DDT © ECMWF 2016 15

Setting a conditional breakpoint at line 507 for step 8

HPCF - Debugging programs with DDT © ECMWF 2016 16

Trace point output after 8 steps

 IFS runs until it gets a Floating Point Exception

 Caused by a divide by zero

 The physics time slice has gone to zero

 Will use a watch point to find out where

HPCF - Debugging programs with DDT © ECMWF 2016 17

Running a 24 x 1 configuration

HPCF - Debugging programs with DDT © ECMWF 2016 18

Hitting the divide by zero

HPCF - Debugging programs with DDT © ECMWF 2016 19

After reaching a breakpoint in callpar.F90 and setting a watch point on tsphy

HPCF - Debugging programs with DDT © ECMWF 2016 20

After the watch point triggers in sltend.F90

HPCF - Debugging programs with DDT © ECMWF 2016 21

Line 412 did it!

 A product that complements DDT

 A simple code profiler for MPI application

 Version 5 supports OpenMP as well

 Designed to be lightweight at scale

- 1000 samples per thread

- Sampling rate adjust automatically

 Same source code browser as DDT

 Find hot spots in the application

HPCF - Debugging programs with DDT © ECMWF 2016 22

Allinea Map

 Compile with debug info

- -G2 for Cray compiler, -g for Intel/Gnu

 Load the DDT module

- module load ddt/5.0.1.3_42607

 Execute make_profiler_libraries script

- Creates libmap-sampler.so libmap-sampler-pmpi.so

 Link libraries into application

- -lmap-sampler –lmap-sampler-pmpi

 Run in batch to collect data via map --profile

- Creates a “profiling file”

 Analyse interactively via map “profiling file”

HPCF - Debugging programs with DDT © ECMWF 2016 23

Using Allinea Map

module load ddt/5.0.1.3_42607

map --profile –n ? –mpiargs ‘more aprun args’ a.out

For example

map --profile –n 4 –mpiargs ‘–N 4 –ss –cc cpu –d 6’ a.out

HPCF - Debugging programs with DDT © ECMWF 2016 24

Using Allinea Map in batch

Allinea Map - Screenshot

HPCF - Debugging programs with DDT © ECMWF 2016 25

 See the DDT/MAP userguide for more information

- /opt/cray/ddt/4.2.1.2_36484/doc/userguide.pdf

- /opt/cray/ddt/5.0.1.3_42607/doc/userguide-forge.pdf

HPCF - Debugging programs with DDT © ECMWF 2016 26

Using Allinea Map

Very Simple DDT Example

tar –xzf ~trx/exercises/debug.tgz

cd Debug

compit

edit job.ddt and set DISPLAY

qsub job.ddt

Try setting

- a breakpoint at line 26

- a watch point on nthreads

- a conditional trace point on line 50 for nstep 50

Find the error output and trace output when it fails

HPCF - Debugging programs with DDT © ECMWF 2016 27

