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 OpenMP = Open Multi-processing

 An application programming interface (API) that supports 
multi-platform shared memory multiprocessing programming

 Supported languages : Fortran (F77/F95/F2xxx), C & C++

 Very portable : supported on most computer platforms, 
processors architectures (NB: not on GPGPUs  OpenACC) & 
operating systems (Linux, AIX, Windows, Solaris, HP-UX,…) 

 Parallelization is accomplished via specific compiler 
directives, calls to library routines and environment variables

 Development of OpenMP standard is managed by a non-profit 
technology consortium – see more http://www.openmp.org

 OpenMP can co-exist with Message Passing Interface (MPI)

- A hybrid (or mixed) parallel programming model

- IFS performance & scalability relies on this mixed mode
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What is OpenMP ?

http://www.openmp.org/


!$OMP PARALLEL PRIVATE(JKGLO,ICEND,IBL,IOFF,ZSLBUF1AUX,JFLD,JROF)

IF (.NOT.ALLOCATED(ZSLBUF1AUX))ALLOCATE (ZSLBUF1AUX(NPROMA,NFLDSLB1))

!$OMP DO SCHEDULE(DYNAMIC,1)

DO JKGLO=1,NGPTOT,NPROMA

ICEND=MIN(NPROMA,NGPTOT-JKGLO+1)

IBL=(JKGLO-1)/NPROMA+1

IOFF=JKGLO

ZSLBUF1AUX(:,:)=_ZERO_

CALL CPG25(CDCONF(4:4) &

&,ICEND,JKGLO,NGPBLKS,ZSLBUF1AUX,ZSLBUF2X(1,1,IBL) &

&,RCORI(IOFF),GM(IOFF),RATATH(IOFF),RATATX(IOFF)&

...

&,GT5(1,MSPT5M,IBL))

!        move data from blocked form to latitude (NASLB1) form

DO JFLD=1,NFLDSLB1

DO JROF=JKGLO,MIN(JKGLO-1+NPROMA,NGPTOT)

ZSLBUF1(NSLCORE(JROF),JFLD)=ZSLBUF1AUX(JROF-JKGLO+1,JFLD)

ENDDO

ENDDO

ENDDO

!$OMP END DO

IF (ALLOCATED(ZSLBUF1AUX)) DEALLOCATE(ZSLBUF1AUX)

!$OMP END PARALLEL

ifs/control/gp_model_ad.F90
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Many parallel regions  course grain parallelism (~avoid)
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Single parallel region  fine grain parallelism (~better)
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Two parallel regions with a single loop in each (BAD !) 
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PROGRAM MPYADD

INTEGER, PARAMETER :: N = 1000000

REAL(8) :: A(N), B(N), C

C = 3.14_8

!$OMP PARALLEL DO

DO J=1,N

A(J) = 1

B(J) = 2

ENDDO

!$OMP END PARALLEL DO

!$OMP PARALLEL DO 

DO J=1,N

A(J) = A(J) + C * B(J) 

ENDDO

!$OMP END PARALLEL DO

END PROGRAM MPYADD

Extra parallel region 

join & fork here 

reduces performance



One parallel region with two loop-nests (GOOD !) 
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PROGRAM MPYADD

INTEGER, PARAMETER :: N = 1000000

REAL(8) :: A(N), B(N), C

C = 3.14_8

!$OMP PARALLEL

!$OMP DO

DO J=1,N

A(J) = 1

B(J) = 2

ENDDO

!$OMP END DO

!$OMP DO 

DO J=1,N

A(J) = A(J) + C * B(J) 

ENDDO

!$OMP END DO

!$OMP END PARALLEL

END PROGRAM MPYADD
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 State of the hardware in scientific computing 

- Clock speeds (GHz) not going up as in the past (not since ~ 2004)

- Parallel programming skills are needed for achieving performance

- Energy cost may push us to use accelerators 

 GPGPUs (e.g. NVIDIA Tesla)

 Many integrated cores (e.g. Intel Xeon Phi “MIC”)

 Robust programming models now

- Use MPI (Message Passing Interface) or …

- … OpenMP or …

- … both together  hybrid computing

 Also good results can be achieved by use of OpenACC / CUDA

- Less trivial to maintain single, portable code base

- GPGPUs out of scope for this training
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Typical hardware in scientific computing



Typical hardware in scientific computing
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Core Core Core Core



Distributed, shared & hybrid programming 
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A compute node



Intel Core i7 socket (SnB, IvB, HsW, BdW)
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Regs

L1 

d-cache

L1 

i-cache

L2

unified cache

L3 unified cache

(shared by all cores of the socket)

Regs

L1 

d-cache

L1 

i-cache

L2

unified cache

Core 0 Core N-1

MAIN MEMORY

. . .



ECMWF Cray systems (phases I & II)

I. Cray XC30 node : N = 12

 Ivy Bridge @ 2.7GHz

 12 cores x 2 sockets

 24 cores / node

 64GB / node

 ~ 3400 nodes x 2

II. Cray XC40 node : N = 18

 Broadwell @ 2.1GHz

 18 cores x 2 sockets

 36 cores node

 128GB / node

 ~ 3500 nodes x 2
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Processes vs. threads

 Process (e.g. an MPI-task)

- Independent execution unit

- Own state & address space

- Created upon start of program

- Communication between 

processes usually via MPI

- Not all processes have to 

reside on the same physical 

compute node 

 Thread (as with OpenMP)

- A single process can have 

multiple threads

- All threads of a process share 

the same state & address space

- Can be created & destroyed 

dynamically (as needed)

- Communicate directly through 

the shared memory
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 Core affinity or thread-to-core binding

- Pins individual threads to cores upon start up of a program

 Often paramount for good performance & scaling

- Prevents runtime migration of threads to another cores

- Better memory locality and reduction of cache misses

 Usually set outside the program, e.g.

- During aprun/mpirun invocation

- export OMP_PROC_BIND=true
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Core affinity
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 One of the main objectives: The same code should run 
correctly with and without OpenMP directives

- The !$ sentinel is treated as a comment in non-OpenMP runs

- Use only in a very exceptional cases #ifdef _OPENMP -blocks
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Hello World – with OpenMP

PROGRAM HELLO_WORLD

#ifdef _OPENMP

use omp_lib

#endif

INTEGER :: tid

!$OMP PARALLEL PRIVATE(tid)

#ifdef _OPENMP

tid = omp_get_thread_num( )

#else

tid = 0

#endif

print *,’Hello World! tid#’,tid

!$OMP END PARALLEL

END PROGRAM HELLO_WORLD

PROGRAM HELLO_WORLD

!$ use omp_lib

INTEGER :: tid

!$OMP PARALLEL PRIVATE(tid)

tid = 0

!$ tid = omp_get_thread_num( )

!$OMP CRITICAL

print *,’Hello World! tid#’,tid

!$OMP END CRITICAL

!$OMP END PARALLEL

END PROGRAM HELLO_WORLD



 The !$OMP PARALLEL -- !$OMP END PARALLEL 

defines a parallel region, where one or more threads 
(master + slaves) execute the same code usually 
independently working with their own copy of data 
(otherwise data race condition)

 Before and after parallel region only the master 
thread executes the code

 Within a parallel region work can be split between 
threads by

- Loop nests ( !$OMP DO )

- Work sharing with F90 array syntax ( !$OMP WORKSHARE )

- Code sections  ( !$OMP SECTION )

- Single and master constructs ( !$OMP SINGLE | MASTER )

- Using OpenMP tasks ( !$OMP TASK )
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OpenMP parallel regions and work sharing



Key directives – Parallel Region

!$OMP PARALLEL [clause,[clause…]]

code block

!$OMP END PARALLEL

Where clause can be

•PRIVATE(list)

•etc.,
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Key directives – Work-sharing constructs/1

!$OMP DO [clause,[clause…]]

do_loop

!$OMP END DO [nowait]

Where clause can be

•PRIVATE(list)

•SCHEDULE(type[,chunk])

•REDUCTION(operator:variable)

•etc.,
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Key directives – combined parallel work-sharing/1

!$OMP PARALLEL DO [clause,[clause…]]

do_loop

!$OMP END PARALLEL DO [nowait]

Where clause can be

•PRIVATE(list)

•SCHEDULE(type[,chunk])

•etc.,
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For example vector multiply & add 
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PROGRAM MPYADD

INTEGER, PARAMETER :: N = 1000000

REAL(8) :: A(N), B(N), C

C = 3.14_8

A(:) = 1 ; B(:) = 2

!$OMP PARALLEL DEFAULT(NONE) PRIVATE(J) SHARED(A,B,C)

!$OMP DO 

DO J=1,N

A(J) = A(J) + C * B(J) 

ENDDO

!$OMP END DO

!$OMP END PARALLEL

PRINT *,’SUM(A)=’,SUM(A)

END PROGRAM MPYADD

Optional here, but 

highly recommended !!



Reduction loop : Dot product of two vectors
Due to floating point arithmetic the result is NOT reproducible !!
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PROGRAM DAXPY

INTEGER, PARAMETER :: N = 1000000

REAL(8) :: A(N), B(N), S

A(:) = 1 ; B(:) = 2

S = 0

!$OMP PARALLEL REDUCTION(+:S)

!$OMP DO

DO J=1,N

S = S + A(J)* B(J) 

ENDDO

!$OMP END DO

!$OMP END PARALLEL

PRINT *,’S = ’,S

END PROGRAM DAXPY



Key directives – Work-sharing constructs/2

!$OMP WORKSHARE

code block with Fortran array syntax

!$OMP END WORKSHARE

No PRIVATE or SCHEDULE options

A good example for code block would be 

Fortran array assignment statements (i.e. 

no DO-loops involved)
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Key directives – combined parallel work-sharing/2

!$OMP PARALLEL WORKSHARE [clause,[clause…]]

code block with Fortran array syntax

!$OMP END PARALLEL WORKSHARE

Where clause can be

•PRIVATE(list)

•etc.,
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Using WORKSHARE with Fortran array syntax
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PROGRAM WSHARE

INTEGER, PARAMETER :: N = 1000000

REAL(8) :: A(N), B(N), C(N)

A(1:N/2) = 0 ; A(1/N+1) = 1

!$OMP PARALLEL

!$OMP WORKSHARE

WHERE (A == 0)

B = 1 ; C = 2

ELSEWHERE

B = 0 ; C = 1

END WHERE

A = A + B * C

!$OMP END WORKSHARE

!$OMP END PARALLEL

END PROGRAM WSHARE



We can also have general code section parallelism
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PROGRAM CODESEC

INTEGER, PARAMETER :: N = 1000000

REAL(8) :: A(N), B(N), C(N), D(N/2), E(N/2)

!$OMP PARALLEL

!$OMP SECTIONS

!$OMP SECTION

CALL AFUNC (A,N)

!$OMP SECTION

CALL BFUNC (B, N)

!$OMP SECTION

CALL CFUNC (C, N)

!$OMP SECTION

CALL EDCALC (D, E, N/2)

!$OMP END SECTIONS

!$OMP END PARALLEL

END PROGRAM CODESEC



Synchronisation overheads on IBM Power690+ (Power4)
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 Synchronization (implicit/explicit) is essential to ensure 
correctness of parallel execution (no data race conditions)

- Prevents updates to the same memory location by many threads

 Synchronization occurs automatically (implicitly) at the end of 
!$OMP PARALLEL region

- Also at the end of do loops i.e. !$OMP END DO unless additional 

NOWAIT clause is supplied

 Explicit synchronization (all threads participate)

- !$OMP BARRIER

- !$OMP ATOMIC

- !$OMP CRITICAL – !$OMP END CRITICAL

 Explicit synchronization usually by a pair of threads

- Calls to OpenMP lock routines (e.g. OMP_SET_LOCK)

- Out of scope for this training
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Thread synchronization



 Critical sections are code sections that are run by a single 
thread at a time – e.g. PRINT’ing from a thread to logfile

- Reduction is one typical example 

- When applied to scalars also !$OMP ATOMIC can be used

- The way fastest (and simplest) is still use the REDUCTION –clause 
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Three ways to implement reduction e.g. summation

PR = 1

!$OMP PARALLEL DO &

!$OMP& REDUCTION(*:PR)

DO J=1,N

PR = PR * A(J)

ENDDO

!$OMP END DO PARALLEL

PR = 1

!$OMP PARALLEL DO & 

!$OMP& SHARED(PR)

DO J=1,N

!$OMP CRITICAL

PR = PR * A(J)

!$OMP END CRITICAL

ENDDO

!$OMP END DO PARALLEL

PR = 1

!$OMP PARALLEL & 

!$OMP& SHARED(PR) &

!$OMP& PRIVATE(PLCL)

PLCL = 1

!$OMP DO

DO J=1,N

PLCL = PLCL * A(J)

ENDDO

!$OMP END DO

!$OMP ATOMIC
PR = PR * PLCL 

!$OMP END PARALLEL



 NOWAIT provides way to avoid implicit synchronization between 

successive DO-loops in a PARALLEL region

 Supply NOWAIT at the !$OMP END DO directive, but make sure the 

DO-loops are not overwriting each others arrays (race condition)

 Occasionally !$OMP BARRIER needed to ensure correctness

Introduction to OpenMP 35

NOWAIT – now, be careful with it !!

!– CORRECT CODE --

!$OMP PARALLEL

!$OMP DO

DO J=1,N

A(J) = B(J) + C(J)

ENDDO

!$OMP END DO

!$OMP DO

DO J=1,N

D(J) = B(J)

ENDDO

!$OMP END DO

!$OMP DO

DO J=1,N

C(J) = A(J)

ENDDO

!$OMP END DO

!$OMP END PARALLEL

!– WRONG at 3rd LOOP 

!$OMP PARALLEL

!$OMP DO

DO J=1,N

A(J) = B(J) + C(J)

ENDDO

!$OMP END DO NOWAIT

!$OMP DO

DO J=1,N

D(J) = B(J)

ENDDO

!$OMP END DO NOWAIT

!$OMP DO

DO J=1,N

C(J) = A(J)

ENDDO

!$OMP END DO NOWAIT

!$OMP END PARALLEL

!– CORRECT AGAIN !!

!$OMP PARALLEL

!$OMP DO

DO J=1,N

A(J) = B(J) + C(J)

ENDDO

!$OMP END DO NOWAIT

!$OMP DO

DO J=1,N

D(J) = B(J)

ENDDO

!$OMP END DO NOWAIT

!$OMP BARRIER
!$OMP DO

DO J=1,N

C(J) = A(J)

ENDDO

!$OMP END DO NOWAIT

!$OMP END PARALLEL



 Start with a correct serial execution of the application

 Apply OpenMP directives to time-consuming DO-loops one 
at a time and TEST – TEST – TEST !!

 Use high level approach where possible

 Use ‘thread checker’ (Intel Inspector) to perform a 
correctness check [not covered in this training]

 Results may change slightly, but the ultimate goal is that

- Results are bit reproducible for varying number of threads

 Avoid reductions for REAL -numbers (except: max, min)

- as they cause different results for different #’s of threads

 Fortran array syntax parallelization through WORKSHARE

Summary of OpenMP parallelization strategies
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 Multiple choice of compiler vendors:

Cray/CCE (the default & our target in this training)

Intel (ifort) :       module swap PrgEnv-cray PrgEnv-intel

GNU (gfortran): module swap PrgEnv-cray PrgEnv-gnu

 All use the same ftn wrapper (in Fortran, cc for C-programs)

Cray/CCE: ftn –homp f.F90 –o prog.x

Intel:  ftn –qopenmp –qopenmp-threadprivate compat f.F90

GNU: ftn –fopenmp f.F90 –o prog.x

 Run-script must contain at least (here using 6 threads):

export OMP_NUM_THREADS=6

aprun –d $OMP_NUM_THREADS prog.x
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OpenMP on ECMWF Cray system
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#!/bin/ksh

#PBS -q np

#PBS -j oe

#PBS -N OMP1

#PBS -o omptest.out

#PBS -l EC_nodes=1

#PBS -l EC_total_tasks=1

#PBS -l EC_tasks_per_node=1

#PBS -l EC_threads_per_task=24

#PBS -l EC_hyperthreads=1

#PBS -l walltime=00:01:00

cd $PBS_O_WORKDIR

ftn -ra -homp -o omptest omptest1.F90

for omp in 1 2 3 6 12 24

do

echo Using $omp threads

export OMP_NUM_THREADS=$omp

aprun -d $OMP_NUM_THREADS omptest

done
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PROGRAM COPY

INTEGER, PARAMETER :: N = 1000000 ! Working set size

INTEGER :: J, IA(N), IB(N)

IA(:) = 1

!$OMP PARALLEL DEFAULT(NONE) PRIVATE(J) SHARED(IA,IB)

!$OMP DO 

DO J=1,N

IB(J) = IA(J)

ENDDO

!$OMP END DO

!$OMP END PARALLEL

PRINT *,’SUM(IB)=’,SUM(IB)

END PROGRAM COPY

Scalability of memory copying – a key to performance
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PROGRAM COPY

INTEGER, PARAMETER :: N = 1000000

INTEGER :: J, IA(N), IB(N)

IA(:) = 1

!$OMP PARALLEL DO

DO J=1,N

IB(J) = IA(J)

ENDDO

!$OMP END PARALLEL DO

PRINT *,’SUM(IB)=’,SUM(IB)

END PROGRAM COPY



Timings (µsec) of INTEGER-copy : IB(j) = IA(j)
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Scaling (speed-up) of INTEGER-copy : IB(j) = IA(j)
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Impact of L3-cache 

size (2x30MB)

Fits

Does 

not fit



Array copying speed (GB/s) as F(working set size, #threads)
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Sweet spot

(“optimal”)



Copying speed in GB/s – per thread (24cores/node)
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 Varying vector lengths : N = 10k, 100k, 10M

- Threads from 1 to 24

- REAL(8) array A initialized with random numbers before PARALLEL DO
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Scaling (speed-up) of  B(j) = A(j) * cos(A(j)) * sin(A(j))



The SCHEDULE-clause

 We can control the chunk size 

i.e. how many consecutive DO-

loop indices belong to a 

particular thread at once

 Scheduling scenarios can be 

STATIC , DYNAMIC or GUIDED

 The default is STATIC,NCHUNK 

where NCHUNK is             

(N+numth-1)/numth

 A special schedule RUNTIME

can be used to test performance 

of various scheduling scenarios 

without changing the code

- Just change the environment 

variable OMP_SCHEDULE
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!$OMP PARALLEL

!$OMP DO SCHEDULE(STATIC)

DO J=1,N

A(J) = A(J) + C * B(J) 

ENDDO

!$OMP END DO

!$OMP END PARALLEL

!$OMP PARALLEL

!$OMP DO SCHEDULE(DYNAMIC,1)

DO J=1,N

A(J) = A(J) + C * B(J) 

ENDDO

!$OMP END DO

!$OMP END PARALLEL

!$OMP PARALLEL

!$OMP DO SCHEDULE(RUNTIME)

DO J=1,N

A(J) = A(J) + C * B(J) 

ENDDO

!$OMP END DO

!$OMP END PARALLEL



SCHEDULE overheads on IBM Power690+ (8 cores)
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• More about scheduling during the exercises …
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 Sometimes data structures are not linear, e.g. unstructured 
meshes, linked lists

 To capture available parallelism, use !$OMP TASK construct
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OpenMP task construct

TYPE(OBJECT) :: DATA(N)

REAL :: R

...

!$OMP PARALLEL SHARED(DATA) PRIVATE(J,R)

!$OMP SINGLE  !– runs on some thread

DO J=1,N

CALL RANDOM_NUMBER(R) ! Values = (0.0 .. 1.0)

IF (R > 0.5) THEN

!$OMP TASK !- runs on next available thread

!– note: DATA() is still SHARED

!- but  J is now FIRSTPRIVATE

CALL UPDATE(DATA(J))

!$OMP END TASK
ENDIF

ENDDO

!$OMP END SINGLE

!$OMP END PARALLEL



 OMP_NUM_THREADS

- Set max number of threads

 OMP_SCHEDULE

- Apply schedule for DO SCHEDULE(RUNTIME)

 OMP_PROC_BIND

- Set to true to enable core affinity

 OMP_NESTED

- Set to false to disable nested PARALLEL regions

 OMP_WAIT_POLICY

- Set to active to keep threads running between PARALLEL regions

 OMP_STACKSIZE

- See next page
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Some notable environment variables in OpenMP



 Master thread stack inherits its 
process’ stack

 Non-master thread stacks

- Default on CRAY 128 Mbytes

- OMP_STACKSIZE=256M to 
increase to 256MBytes

 Large arrays (>1 Mbyte?) 
should use the heap

REAL,ALLOCATABLE :: BIGGY(:)

ALLOCATE(BIGGY(100000000))

DEALLOCATE(BIGGY)

 But in general : use of STACK 
instead of HEAP in PARALLEL 
regions improves performance 
of your application !

Stack issues with OpenMP
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> ulimit -a

address space limit (Kibytes)  (-M)  52857040

core file size (blocks)        (-c)  unlimited

cpu time (seconds)             (-t)  unlimited

data size (Kibytes)            (-d)  unlimited

file size (blocks)             (-f)  unlimited

locks                          (-x)  unlimited

locked address space (Kibytes) (-l)  unlimited

message queue size (Kibytes)   (-q)  800

nice                           (-e)  0

nofile (-n)  16000

nproc (-u)  516081

pipe buffer size (bytes)       (-p)  4096

max memory size (Kibytes)      (-m)  63221760

rtprio (-r)  0

socket buffer size (bytes)     (-b)  4096

sigpend (-i)  516081

stack size (Kibytes)           (-s)  unlimited

swap size (Kibytes)            (-w)  not supported

threads                        (-T)  not supported

process size (Kibytes)         (-v)  52857040

available memory per 

node ~ 54 Gbytes

i.e. 54,000,000,000 bytes



 Always try to allocate & especially initialize memory arrays as 
close as possible to the core on which the thread (or task) that 
the memory is going to be used

- This is also known as memory affinity

 This initialization or first touch makes your application often 
to run faster since memory has been cached to the nearest 
core – the following code snippet shows to do it : 
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First touch

REAL :: A(N)

A(:) = 0

...

!$OMP PARALLEL DO

DO J=1,N

CALL DOWORK(A, J) 

ENDDO

!$OMP END PARALLEL DO

REAL :: A(N)

!$OMP PARALLEL DO

DO J=1,N

A(J) = 0

ENDDO

!$OMP END PARALLEL DO

...

!$OMP PARALLEL DO

DO J=1,N

CALL WORK(A, B, J) 

ENDDO

!$OMP END PARALLEL DO



 Sometimes due to array dimensioning the loop we are 
parallelizing does not have enough parallelism for OpenMP

 In case of multidimensional array, we may get away with this 
by collapsing two or more perfectly nested loops into one 
much longer loop
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Collapsing loops : DO COLLAPSE(x) clause

REAL :: A(100,100,3), S

...

!$OMP PARALLEL DO &

!$OMP& REDUCTION(+:S)

DO K=1,3

DO J=1,100

DO I=1,100

S = S + A(I,J,K)

ENDDO

ENDDO

ENDDO

!$OMP END PARALLEL DO

REAL :: A(100,100,3), S

...

!$OMP PARALLEL DO COLLAPSE(3)

!$OMP& REDUCTION(+:S)

DO K=1,3

DO J=1,100

DO I=1,100

S = S + A(I,J,K)

ENDDO

ENDDO

ENDDO

!$OMP END PARALLEL DO



 Not always all participating threads end up doing the same 
amount of work

- The total time is dictated by the slowest running thread

 Often programmer can only alleviate the problems as LI 
maybe due to the nature of the problem, e.g.

- Low observation coverage in certain areas

- Scattered cloud cover 

 To lessen the impact of LI one could try for example

- Try different SCHEDULE options (e.g. GUIDED, DYNAMIC)

- Limits the max number of participating threads (NUM_THREADS)

- Skip parallelization unless problems size of big e.g. IF (N > 1000)

- Use !$OMP TASK
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Load imbalance (LI)



 Modern CPUs have multilevel caches

 Data is accessed from caches in chunks

- Usually 64 bytes cache lines

- And even if you need just one byte from memory

 The same data item maybe needed by more than one thread

- Data consistency requires cache coherence logic through H/W

 When different threads modify successive memory locations 
[falling potentially to the same cache line], then the cache 
coherence logic forces these updates to be performed to the 
all cache copies in all participating cores

- A huge performance penalty due to high rate of cache misses

- Fix : avoid writes to the successive memory locations by different 

threads by using array padding or even over-dimensioning, or by 

use of REDUCTION -clause
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False sharing



 In histogram calculations we extract bin-index from data

 Since bins may be adjacent – potentially falling into the same 
cache line – then cache coherency protocol ensures that 
every core (and therefore thread) has a consistent view of 
histogram counts at any bin-index
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False sharing example & fix

REAL :: DATA(N)

INTEGER :: IDX,H(0:NB)

H(:) = 0 ! Histogram

!$OMP PARALLEL PRIVATE(IDX)

!$OMP DO

DO J=1,N

CALL GETBIN(DATA(J),IDX)

H(IDX) = H(IDX) + 1 

ENDDO

!$OMP END DO

!$OMP END PARALLEL

REAL :: DATA(N)

INTEGER :: IDX,H(0:NB)

H(:) = 0 ! Histogram

!$OMP PARALLEL PRIVATE(IDX) 

!$OMP DO REDUCTION(+:H)

DO J=1,N

CALL GETBIN(DATA(J),IDX)

H(IDX) = H(IDX) + 1 

ENDDO

!$OMP END DO

!$OMP END PARALLEL



 Data race condition occurs when multiple threads attempt to 
write the same memory location at once

 This is an error and results will be unpredictable

 To avoid race conditions, use DEFAULT(NONE) clause in your 
!$OMP PARALLEL statement

- Forces you to think every single variable whether this is PRIVATE 

or SHARED

- All SUBROUTINE/FUNCTION local variables are by default 

PRIVATE, unless they have been declared to SAVE-variables

 Another way to avoid race conditions is to use CRITICAL
sections, ATOMIC constructs, OpenMP locks, !$OMP SINGLE , 
or !$OMP MASTER + BARRIER constructs

- But be aware that serialization hurts your parallel performance !!
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(Data) race condition



 It is unsafe to store to the same location  
(scalar or array) from multiple threads of a 
parallel region

 A safe & recommended strategy is to 

- only read shared variables

- only write to non-shared variables

 parallel region PRIVATE variables

 subroutine local variables within parallel 
region

 threads writing to different memory locations 
in a module
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Ensuring safe execution of parallel OpenMP regions



!$OMP PARALLEL DO

DO J=1,N

CALL WORK(J)

ENDDO

!$OMP END PARALLEL DO

...

SUBROUTINE WORK(K)

USE MYMOD, ONLY : X, A

INTEGER K

X=A(K) ! X has read/write conflict 

CALL SUB(X)

Storing data: Unsafe & Safe code snippets 
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!$OMP PARALLEL DO

DO J=1,N

CALL WORK(J)

ENDDO

!$OMP END PARALLEL DO

...

SUBROUTINE WORK(K)

USE MYMOD, ONLY : X, A

INTEGER K

A(K)=X ! Writing to different A(K) locations

CALL SUB(X)

Unsafe & Wrong

Safe to write



!$OMP PARALLEL DO

DO J=1,N

CALL WORK(J)

ENDDO

!$OMP END PARALLEL DO

...

SUBROUTINE WORK(K)

USE MYMOD, ONLY : M

IVAL = <calculation here>

!$OMP CRITICAL

M=M+IVAL

!$OMP END CRITICAL

Reduction example – all safe : Slow/Better/Fast
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USE MYMOD, ONLY : M

IVAL=0

!$OMP PARALLEL DO &

!$OMP& REDUCTION(+:IVAL)

DO J=1,N

CALL WORK(J,IVAL)

ENDDO

!$OMP END PARALLEL DO

M=M+IVAL

...

SUBROUTINE WORK(K,KVAL)

IVAL = <calculation here>

KVAL = KVAL + IVAL

USE MYMOD, ONLY : M

INTEGER IVAL(N)

...

!$OMP PARALLEL DO

DO J=1,N

CALL WORK(J,IVAL(J))

ENDDO

!$OMP END PARALLEL DO

M=M+SUM(IVAL)

...

SUBROUTINE WORK(K,KVAL)

KVAL = <calculation here>

Slow

Better

Fast



Critical Region: Unsafe / Safe and Coolest !  

L_DO_ONCE = .TRUE.

!$OMP PARALLEL 

...

IF( L_DO_ONCE )THEN

!$OMP CRITICAL (REGION)

<executed only once>

L_DO_ONCE=.FALSE.

!$OMP END CRITICAL (REGION)

ENDIF

...

!$OMP END PARALLEL
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L_DO_ONCE = .TRUE.

!$OMP PARALLEL 

...

!$OMP CRITICAL (REGION)

IF( L_DO_ONCE )THEN

<executed only once>

L_DO_ONCE=.FALSE.

ENDIF

!$OMP END CRITICAL (REGION)

...

!$OMP END PARALLEL

!$OMP PARALLEL 

...

!$OMP SINGLE 

<executed only once>

!$OMP END SINGLE

!– Implicit BARRIER here --

...

!$OMP END PARALLEL

Unsafe & Wrong

Safe, but … 

Coolest: $OMP SINGLE



 Consider a large 2D-grid with say 102400 x 102400 points

- 3rd dimension is fixed to say 137 levels

 Does not fit into memory of one compute node

- Need MPI & 2D domain decomposition with halo-areas (width = 4)

 Imagine a computer with 6,400 nodes with 16 cores/node

- Solving the problem with 102,400 MPI tasks, one for each core

- Each sub-grid reduces to a region of just 320 x  320 x L137

- Due to halo-areas EACH of many 3D-arrays is > 5% larger

- MPI internal data structures (& overhead) would also be excessive

 Using 16-way OpenMP we only need 6,400 MPI-tasks

- Decomposition for each MPI-task is now  1,280 x 1,280 x L137

- Less MPI overheads – and memory overhead alone ~ 1%

- But : OpenMP parallelism MUST now be almost perfect, too 
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Why OpenMP with MPI saves memory over pure MPI?



QUESTIONS ? 
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