
© ECMWF January 26, 2016

Introduction to OpenMP

Sami Saarinen

Sami.Saarinen@ecmwf.int

 Thanks to George Mozdzynski (ECMWF) for
providing the original version of OpenMP training
material from past few years

 Iain Miller & Peter Towers (ECMWF) for providing
brand new data for IFS scaling results on Cray XC30

 Mikko Byckling (Intel) for an excellent set of
OpenMP slides for reference

Introduction to OpenMP 2

Acknowledgements

OpenMP at a glance

Matching with available hardware

Processes vs. threads and core affinity

Parallelization strategies with OpenMP

Using OpenMP on ECMWF Cray system

Performance & scalability of OpenMP

Miscellaneous cool stuff

Introduction to OpenMP 3

Agenda

OpenMP at a glance

Matching with available hardware

Processes vs. threads and core affinity

Parallelization strategies with OpenMP

Using OpenMP on ECMWF Cray system

Performance & scalability of OpenMP

Miscellaneous cool stuff

Introduction to OpenMP 4

Agenda

 OpenMP = Open Multi-processing

 An application programming interface (API) that supports
multi-platform shared memory multiprocessing programming

 Supported languages : Fortran (F77/F95/F2xxx), C & C++

 Very portable : supported on most computer platforms,
processors architectures (NB: not on GPGPUs  OpenACC) &
operating systems (Linux, AIX, Windows, Solaris, HP-UX,…)

 Parallelization is accomplished via specific compiler
directives, calls to library routines and environment variables

 Development of OpenMP standard is managed by a non-profit
technology consortium – see more http://www.openmp.org

 OpenMP can co-exist with Message Passing Interface (MPI)

- A hybrid (or mixed) parallel programming model

- IFS performance & scalability relies on this mixed mode

Introduction to OpenMP 5

What is OpenMP ?

http://www.openmp.org/

!$OMP PARALLEL PRIVATE(JKGLO,ICEND,IBL,IOFF,ZSLBUF1AUX,JFLD,JROF)

IF (.NOT.ALLOCATED(ZSLBUF1AUX))ALLOCATE (ZSLBUF1AUX(NPROMA,NFLDSLB1))

!$OMP DO SCHEDULE(DYNAMIC,1)

DO JKGLO=1,NGPTOT,NPROMA

ICEND=MIN(NPROMA,NGPTOT-JKGLO+1)

IBL=(JKGLO-1)/NPROMA+1

IOFF=JKGLO

ZSLBUF1AUX(:,:)=_ZERO_

CALL CPG25(CDCONF(4:4) &

&,ICEND,JKGLO,NGPBLKS,ZSLBUF1AUX,ZSLBUF2X(1,1,IBL) &

&,RCORI(IOFF),GM(IOFF),RATATH(IOFF),RATATX(IOFF)&

...

&,GT5(1,MSPT5M,IBL))

! move data from blocked form to latitude (NASLB1) form

DO JFLD=1,NFLDSLB1

DO JROF=JKGLO,MIN(JKGLO-1+NPROMA,NGPTOT)

ZSLBUF1(NSLCORE(JROF),JFLD)=ZSLBUF1AUX(JROF-JKGLO+1,JFLD)

ENDDO

ENDDO

ENDDO

!$OMP END DO

IF (ALLOCATED(ZSLBUF1AUX)) DEALLOCATE(ZSLBUF1AUX)

!$OMP END PARALLEL

ifs/control/gp_model_ad.F90

6Introduction to OpenMP

Many parallel regions  course grain parallelism (~avoid)

Introduction to OpenMP 7

Single parallel region  fine grain parallelism (~better)

Introduction to OpenMP 8

Two parallel regions with a single loop in each (BAD !)

Introduction to OpenMP 9

PROGRAM MPYADD

INTEGER, PARAMETER :: N = 1000000

REAL(8) :: A(N), B(N), C

C = 3.14_8

!$OMP PARALLEL DO

DO J=1,N

A(J) = 1

B(J) = 2

ENDDO

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

DO J=1,N

A(J) = A(J) + C * B(J)

ENDDO

!$OMP END PARALLEL DO

END PROGRAM MPYADD

Extra parallel region

join & fork here

reduces performance

One parallel region with two loop-nests (GOOD !)

Introduction to OpenMP 10

PROGRAM MPYADD

INTEGER, PARAMETER :: N = 1000000

REAL(8) :: A(N), B(N), C

C = 3.14_8

!$OMP PARALLEL

!$OMP DO

DO J=1,N

A(J) = 1

B(J) = 2

ENDDO

!$OMP END DO

!$OMP DO

DO J=1,N

A(J) = A(J) + C * B(J)

ENDDO

!$OMP END DO

!$OMP END PARALLEL

END PROGRAM MPYADD

OpenMP at a glance

Matching with available hardware

Processes vs. threads and core affinity

Parallelization strategies with OpenMP

Using OpenMP on ECMWF Cray system

Performance & scalability of OpenMP

Miscellaneous cool stuff

Introduction to OpenMP 11

Agenda

 State of the hardware in scientific computing

- Clock speeds (GHz) not going up as in the past (not since ~ 2004)

- Parallel programming skills are needed for achieving performance

- Energy cost may push us to use accelerators

 GPGPUs (e.g. NVIDIA Tesla)

 Many integrated cores (e.g. Intel Xeon Phi “MIC”)

 Robust programming models now

- Use MPI (Message Passing Interface) or …

- … OpenMP or …

- … both together  hybrid computing

 Also good results can be achieved by use of OpenACC / CUDA

- Less trivial to maintain single, portable code base

- GPGPUs out of scope for this training

Introduction to OpenMP 12

Typical hardware in scientific computing

Typical hardware in scientific computing

Introduction to OpenMP 13

Core Core Core Core

Distributed, shared & hybrid programming

Introduction to OpenMP 14

A compute node

Intel Core i7 socket (SnB, IvB, HsW, BdW)

Introduction to OpenMP 15

Regs

L1

d-cache

L1

i-cache

L2

unified cache

L3 unified cache

(shared by all cores of the socket)

Regs

L1

d-cache

L1

i-cache

L2

unified cache

Core 0 Core N-1

MAIN MEMORY

. . .

ECMWF Cray systems (phases I & II)

I. Cray XC30 node : N = 12

 Ivy Bridge @ 2.7GHz

 12 cores x 2 sockets

 24 cores / node

 64GB / node

 ~ 3400 nodes x 2

II. Cray XC40 node : N = 18

 Broadwell @ 2.1GHz

 18 cores x 2 sockets

 36 cores node

 128GB / node

 ~ 3500 nodes x 2

Introduction to OpenMP 16

OpenMP at a glance

Matching with available hardware

Processes vs. threads and core affinity

Parallelization strategies with OpenMP

Using OpenMP on ECMWF Cray system

Performance & scalability of OpenMP

Miscellaneous cool stuff

Introduction to OpenMP 17

Agenda

Processes vs. threads

 Process (e.g. an MPI-task)

- Independent execution unit

- Own state & address space

- Created upon start of program

- Communication between

processes usually via MPI

- Not all processes have to

reside on the same physical

compute node

 Thread (as with OpenMP)

- A single process can have

multiple threads

- All threads of a process share

the same state & address space

- Can be created & destroyed

dynamically (as needed)

- Communicate directly through

the shared memory

Introduction to OpenMP 18

 Core affinity or thread-to-core binding

- Pins individual threads to cores upon start up of a program

 Often paramount for good performance & scaling

- Prevents runtime migration of threads to another cores

- Better memory locality and reduction of cache misses

 Usually set outside the program, e.g.

- During aprun/mpirun invocation

- export OMP_PROC_BIND=true

Introduction to OpenMP 19

Core affinity

OpenMP at a glance

Matching with available hardware

Processes vs. threads and core affinity

Parallelization strategies with OpenMP

Using OpenMP on ECMWF Cray system

Performance & scalability of OpenMP

Miscellaneous cool stuff

Introduction to OpenMP 20

Agenda

 One of the main objectives: The same code should run
correctly with and without OpenMP directives

- The !$ sentinel is treated as a comment in non-OpenMP runs

- Use only in a very exceptional cases #ifdef _OPENMP -blocks

Introduction to OpenMP 21

Hello World – with OpenMP

PROGRAM HELLO_WORLD

#ifdef _OPENMP

use omp_lib

#endif

INTEGER :: tid

!$OMP PARALLEL PRIVATE(tid)

#ifdef _OPENMP

tid = omp_get_thread_num()

#else

tid = 0

#endif

print *,’Hello World! tid#’,tid

!$OMP END PARALLEL

END PROGRAM HELLO_WORLD

PROGRAM HELLO_WORLD

!$ use omp_lib

INTEGER :: tid

!$OMP PARALLEL PRIVATE(tid)

tid = 0

!$ tid = omp_get_thread_num()

!$OMP CRITICAL

print *,’Hello World! tid#’,tid

!$OMP END CRITICAL

!$OMP END PARALLEL

END PROGRAM HELLO_WORLD

 The !$OMP PARALLEL -- !$OMP END PARALLEL

defines a parallel region, where one or more threads
(master + slaves) execute the same code usually
independently working with their own copy of data
(otherwise data race condition)

 Before and after parallel region only the master
thread executes the code

 Within a parallel region work can be split between
threads by

- Loop nests (!$OMP DO)

- Work sharing with F90 array syntax (!$OMP WORKSHARE)

- Code sections (!$OMP SECTION)

- Single and master constructs (!$OMP SINGLE | MASTER)

- Using OpenMP tasks (!$OMP TASK)

Introduction to OpenMP 22

OpenMP parallel regions and work sharing

Key directives – Parallel Region

!$OMP PARALLEL [clause,[clause…]]

code block

!$OMP END PARALLEL

Where clause can be

•PRIVATE(list)

•etc.,

23Introduction to OpenMP

Key directives – Work-sharing constructs/1

!$OMP DO [clause,[clause…]]

do_loop

!$OMP END DO [nowait]

Where clause can be

•PRIVATE(list)

•SCHEDULE(type[,chunk])

•REDUCTION(operator:variable)

•etc.,

24Introduction to OpenMP

Key directives – combined parallel work-sharing/1

!$OMP PARALLEL DO [clause,[clause…]]

do_loop

!$OMP END PARALLEL DO [nowait]

Where clause can be

•PRIVATE(list)

•SCHEDULE(type[,chunk])

•etc.,

25Introduction to OpenMP

For example vector multiply & add

Introduction to OpenMP 26

PROGRAM MPYADD

INTEGER, PARAMETER :: N = 1000000

REAL(8) :: A(N), B(N), C

C = 3.14_8

A(:) = 1 ; B(:) = 2

!$OMP PARALLEL DEFAULT(NONE) PRIVATE(J) SHARED(A,B,C)

!$OMP DO

DO J=1,N

A(J) = A(J) + C * B(J)

ENDDO

!$OMP END DO

!$OMP END PARALLEL

PRINT *,’SUM(A)=’,SUM(A)

END PROGRAM MPYADD

Optional here, but

highly recommended !!

Reduction loop : Dot product of two vectors
Due to floating point arithmetic the result is NOT reproducible !!

Introduction to OpenMP 27

PROGRAM DAXPY

INTEGER, PARAMETER :: N = 1000000

REAL(8) :: A(N), B(N), S

A(:) = 1 ; B(:) = 2

S = 0

!$OMP PARALLEL REDUCTION(+:S)

!$OMP DO

DO J=1,N

S = S + A(J)* B(J)

ENDDO

!$OMP END DO

!$OMP END PARALLEL

PRINT *,’S = ’,S

END PROGRAM DAXPY

Key directives – Work-sharing constructs/2

!$OMP WORKSHARE

code block with Fortran array syntax

!$OMP END WORKSHARE

No PRIVATE or SCHEDULE options

A good example for code block would be

Fortran array assignment statements (i.e.

no DO-loops involved)

28Introduction to OpenMP

Key directives – combined parallel work-sharing/2

!$OMP PARALLEL WORKSHARE [clause,[clause…]]

code block with Fortran array syntax

!$OMP END PARALLEL WORKSHARE

Where clause can be

•PRIVATE(list)

•etc.,

29Introduction to OpenMP

Using WORKSHARE with Fortran array syntax

Introduction to OpenMP 30

PROGRAM WSHARE

INTEGER, PARAMETER :: N = 1000000

REAL(8) :: A(N), B(N), C(N)

A(1:N/2) = 0 ; A(1/N+1) = 1

!$OMP PARALLEL

!$OMP WORKSHARE

WHERE (A == 0)

B = 1 ; C = 2

ELSEWHERE

B = 0 ; C = 1

END WHERE

A = A + B * C

!$OMP END WORKSHARE

!$OMP END PARALLEL

END PROGRAM WSHARE

We can also have general code section parallelism

Introduction to OpenMP 31

PROGRAM CODESEC

INTEGER, PARAMETER :: N = 1000000

REAL(8) :: A(N), B(N), C(N), D(N/2), E(N/2)

!$OMP PARALLEL

!$OMP SECTIONS

!$OMP SECTION

CALL AFUNC (A,N)

!$OMP SECTION

CALL BFUNC (B, N)

!$OMP SECTION

CALL CFUNC (C, N)

!$OMP SECTION

CALL EDCALC (D, E, N/2)

!$OMP END SECTIONS

!$OMP END PARALLEL

END PROGRAM CODESEC

Synchronisation overheads on IBM Power690+ (Power4)

32Introduction to OpenMP

 Synchronization (implicit/explicit) is essential to ensure
correctness of parallel execution (no data race conditions)

- Prevents updates to the same memory location by many threads

 Synchronization occurs automatically (implicitly) at the end of
!$OMP PARALLEL region

- Also at the end of do loops i.e. !$OMP END DO unless additional

NOWAIT clause is supplied

 Explicit synchronization (all threads participate)

- !$OMP BARRIER

- !$OMP ATOMIC

- !$OMP CRITICAL – !$OMP END CRITICAL

 Explicit synchronization usually by a pair of threads

- Calls to OpenMP lock routines (e.g. OMP_SET_LOCK)

- Out of scope for this training

Introduction to OpenMP 33

Thread synchronization

 Critical sections are code sections that are run by a single
thread at a time – e.g. PRINT’ing from a thread to logfile

- Reduction is one typical example

- When applied to scalars also !$OMP ATOMIC can be used

- The way fastest (and simplest) is still use the REDUCTION –clause

Introduction to OpenMP 34

Three ways to implement reduction e.g. summation

PR = 1

!$OMP PARALLEL DO &

!$OMP& REDUCTION(*:PR)

DO J=1,N

PR = PR * A(J)

ENDDO

!$OMP END DO PARALLEL

PR = 1

!$OMP PARALLEL DO &

!$OMP& SHARED(PR)

DO J=1,N

!$OMP CRITICAL

PR = PR * A(J)

!$OMP END CRITICAL

ENDDO

!$OMP END DO PARALLEL

PR = 1

!$OMP PARALLEL &

!$OMP& SHARED(PR) &

!$OMP& PRIVATE(PLCL)

PLCL = 1

!$OMP DO

DO J=1,N

PLCL = PLCL * A(J)

ENDDO

!$OMP END DO

!$OMP ATOMIC
PR = PR * PLCL

!$OMP END PARALLEL

 NOWAIT provides way to avoid implicit synchronization between

successive DO-loops in a PARALLEL region

 Supply NOWAIT at the !$OMP END DO directive, but make sure the

DO-loops are not overwriting each others arrays (race condition)

 Occasionally !$OMP BARRIER needed to ensure correctness

Introduction to OpenMP 35

NOWAIT – now, be careful with it !!

!– CORRECT CODE --

!$OMP PARALLEL

!$OMP DO

DO J=1,N

A(J) = B(J) + C(J)

ENDDO

!$OMP END DO

!$OMP DO

DO J=1,N

D(J) = B(J)

ENDDO

!$OMP END DO

!$OMP DO

DO J=1,N

C(J) = A(J)

ENDDO

!$OMP END DO

!$OMP END PARALLEL

!– WRONG at 3rd LOOP

!$OMP PARALLEL

!$OMP DO

DO J=1,N

A(J) = B(J) + C(J)

ENDDO

!$OMP END DO NOWAIT

!$OMP DO

DO J=1,N

D(J) = B(J)

ENDDO

!$OMP END DO NOWAIT

!$OMP DO

DO J=1,N

C(J) = A(J)

ENDDO

!$OMP END DO NOWAIT

!$OMP END PARALLEL

!– CORRECT AGAIN !!

!$OMP PARALLEL

!$OMP DO

DO J=1,N

A(J) = B(J) + C(J)

ENDDO

!$OMP END DO NOWAIT

!$OMP DO

DO J=1,N

D(J) = B(J)

ENDDO

!$OMP END DO NOWAIT

!$OMP BARRIER
!$OMP DO

DO J=1,N

C(J) = A(J)

ENDDO

!$OMP END DO NOWAIT

!$OMP END PARALLEL

 Start with a correct serial execution of the application

 Apply OpenMP directives to time-consuming DO-loops one
at a time and TEST – TEST – TEST !!

 Use high level approach where possible

 Use ‘thread checker’ (Intel Inspector) to perform a
correctness check [not covered in this training]

 Results may change slightly, but the ultimate goal is that

- Results are bit reproducible for varying number of threads

 Avoid reductions for REAL -numbers (except: max, min)

- as they cause different results for different #’s of threads

 Fortran array syntax parallelization through WORKSHARE

Summary of OpenMP parallelization strategies

36Introduction to OpenMP

OpenMP at a glance

Matching with available hardware

Processes vs. threads and core affinity

Parallelization strategies with OpenMP

Using OpenMP on ECMWF Cray system

Performance & scalability of OpenMP

Miscellaneous cool stuff

Introduction to OpenMP 37

Agenda

 Multiple choice of compiler vendors:

Cray/CCE (the default & our target in this training)

Intel (ifort) : module swap PrgEnv-cray PrgEnv-intel

GNU (gfortran): module swap PrgEnv-cray PrgEnv-gnu

 All use the same ftn wrapper (in Fortran, cc for C-programs)

Cray/CCE: ftn –homp f.F90 –o prog.x

Intel: ftn –qopenmp –qopenmp-threadprivate compat f.F90

GNU: ftn –fopenmp f.F90 –o prog.x

 Run-script must contain at least (here using 6 threads):

export OMP_NUM_THREADS=6

aprun –d $OMP_NUM_THREADS prog.x

Introduction to OpenMP 38

OpenMP on ECMWF Cray system

Introduction to OpenMP 39

#!/bin/ksh

#PBS -q np

#PBS -j oe

#PBS -N OMP1

#PBS -o omptest.out

#PBS -l EC_nodes=1

#PBS -l EC_total_tasks=1

#PBS -l EC_tasks_per_node=1

#PBS -l EC_threads_per_task=24

#PBS -l EC_hyperthreads=1

#PBS -l walltime=00:01:00

cd $PBS_O_WORKDIR

ftn -ra -homp -o omptest omptest1.F90

for omp in 1 2 3 6 12 24

do

echo Using $omp threads

export OMP_NUM_THREADS=$omp

aprun -d $OMP_NUM_THREADS omptest

done

OpenMP at a glance

Matching with available hardware

Processes vs. threads and core affinity

Parallelization strategies with OpenMP

Using OpenMP on ECMWF Cray system

Performance & scalability of OpenMP

Miscellaneous cool stuff

Introduction to OpenMP 40

Agenda

Introduction to OpenMP 41

Introduction to OpenMP 42

PROGRAM COPY

INTEGER, PARAMETER :: N = 1000000 ! Working set size

INTEGER :: J, IA(N), IB(N)

IA(:) = 1

!$OMP PARALLEL DEFAULT(NONE) PRIVATE(J) SHARED(IA,IB)

!$OMP DO

DO J=1,N

IB(J) = IA(J)

ENDDO

!$OMP END DO

!$OMP END PARALLEL

PRINT *,’SUM(IB)=’,SUM(IB)

END PROGRAM COPY

Scalability of memory copying – a key to performance

Introduction to OpenMP 43

PROGRAM COPY

INTEGER, PARAMETER :: N = 1000000

INTEGER :: J, IA(N), IB(N)

IA(:) = 1

!$OMP PARALLEL DO

DO J=1,N

IB(J) = IA(J)

ENDDO

!$OMP END PARALLEL DO

PRINT *,’SUM(IB)=’,SUM(IB)

END PROGRAM COPY

Timings (µsec) of INTEGER-copy : IB(j) = IA(j)

Introduction to OpenMP 44

Scaling (speed-up) of INTEGER-copy : IB(j) = IA(j)

Introduction to OpenMP 45

Impact of L3-cache

size (2x30MB)

Fits

Does

not fit

Array copying speed (GB/s) as F(working set size, #threads)

Introduction to OpenMP 46

Sweet spot

(“optimal”)

Copying speed in GB/s – per thread (24cores/node)

Introduction to OpenMP 47

 Varying vector lengths : N = 10k, 100k, 10M

- Threads from 1 to 24

- REAL(8) array A initialized with random numbers before PARALLEL DO

Introduction to OpenMP 48

Scaling (speed-up) of B(j) = A(j) * cos(A(j)) * sin(A(j))

The SCHEDULE-clause

 We can control the chunk size

i.e. how many consecutive DO-

loop indices belong to a

particular thread at once

 Scheduling scenarios can be

STATIC , DYNAMIC or GUIDED

 The default is STATIC,NCHUNK

where NCHUNK is

(N+numth-1)/numth

 A special schedule RUNTIME

can be used to test performance

of various scheduling scenarios

without changing the code

- Just change the environment

variable OMP_SCHEDULE

Introduction to OpenMP 49

!$OMP PARALLEL

!$OMP DO SCHEDULE(STATIC)

DO J=1,N

A(J) = A(J) + C * B(J)

ENDDO

!$OMP END DO

!$OMP END PARALLEL

!$OMP PARALLEL

!$OMP DO SCHEDULE(DYNAMIC,1)

DO J=1,N

A(J) = A(J) + C * B(J)

ENDDO

!$OMP END DO

!$OMP END PARALLEL

!$OMP PARALLEL

!$OMP DO SCHEDULE(RUNTIME)

DO J=1,N

A(J) = A(J) + C * B(J)

ENDDO

!$OMP END DO

!$OMP END PARALLEL

SCHEDULE overheads on IBM Power690+ (8 cores)

50Introduction to OpenMP

• More about scheduling during the exercises …

Introduction to OpenMP 51

OpenMP at a glance

Matching with available hardware

Processes vs. threads and core affinity

Parallelization strategies with OpenMP

Using OpenMP on ECMWF Cray system

Performance & scalability of OpenMP

Miscellaneous cool stuff

Introduction to OpenMP 52

Agenda

 Sometimes data structures are not linear, e.g. unstructured
meshes, linked lists

 To capture available parallelism, use !$OMP TASK construct

Introduction to OpenMP 53

OpenMP task construct

TYPE(OBJECT) :: DATA(N)

REAL :: R

...

!$OMP PARALLEL SHARED(DATA) PRIVATE(J,R)

!$OMP SINGLE !– runs on some thread

DO J=1,N

CALL RANDOM_NUMBER(R) ! Values = (0.0 .. 1.0)

IF (R > 0.5) THEN

!$OMP TASK !- runs on next available thread

!– note: DATA() is still SHARED

!- but J is now FIRSTPRIVATE

CALL UPDATE(DATA(J))

!$OMP END TASK
ENDIF

ENDDO

!$OMP END SINGLE

!$OMP END PARALLEL

 OMP_NUM_THREADS

- Set max number of threads

 OMP_SCHEDULE

- Apply schedule for DO SCHEDULE(RUNTIME)

 OMP_PROC_BIND

- Set to true to enable core affinity

 OMP_NESTED

- Set to false to disable nested PARALLEL regions

 OMP_WAIT_POLICY

- Set to active to keep threads running between PARALLEL regions

 OMP_STACKSIZE

- See next page

Introduction to OpenMP 54

Some notable environment variables in OpenMP

 Master thread stack inherits its
process’ stack

 Non-master thread stacks

- Default on CRAY 128 Mbytes

- OMP_STACKSIZE=256M to
increase to 256MBytes

 Large arrays (>1 Mbyte?)
should use the heap

REAL,ALLOCATABLE :: BIGGY(:)

ALLOCATE(BIGGY(100000000))

DEALLOCATE(BIGGY)

 But in general : use of STACK
instead of HEAP in PARALLEL
regions improves performance
of your application !

Stack issues with OpenMP

55Introduction to OpenMP

> ulimit -a

address space limit (Kibytes) (-M) 52857040

core file size (blocks) (-c) unlimited

cpu time (seconds) (-t) unlimited

data size (Kibytes) (-d) unlimited

file size (blocks) (-f) unlimited

locks (-x) unlimited

locked address space (Kibytes) (-l) unlimited

message queue size (Kibytes) (-q) 800

nice (-e) 0

nofile (-n) 16000

nproc (-u) 516081

pipe buffer size (bytes) (-p) 4096

max memory size (Kibytes) (-m) 63221760

rtprio (-r) 0

socket buffer size (bytes) (-b) 4096

sigpend (-i) 516081

stack size (Kibytes) (-s) unlimited

swap size (Kibytes) (-w) not supported

threads (-T) not supported

process size (Kibytes) (-v) 52857040

available memory per

node ~ 54 Gbytes

i.e. 54,000,000,000 bytes

 Always try to allocate & especially initialize memory arrays as
close as possible to the core on which the thread (or task) that
the memory is going to be used

- This is also known as memory affinity

 This initialization or first touch makes your application often
to run faster since memory has been cached to the nearest
core – the following code snippet shows to do it :

Introduction to OpenMP 56

First touch

REAL :: A(N)

A(:) = 0

...

!$OMP PARALLEL DO

DO J=1,N

CALL DOWORK(A, J)

ENDDO

!$OMP END PARALLEL DO

REAL :: A(N)

!$OMP PARALLEL DO

DO J=1,N

A(J) = 0

ENDDO

!$OMP END PARALLEL DO

...

!$OMP PARALLEL DO

DO J=1,N

CALL WORK(A, B, J)

ENDDO

!$OMP END PARALLEL DO

 Sometimes due to array dimensioning the loop we are
parallelizing does not have enough parallelism for OpenMP

 In case of multidimensional array, we may get away with this
by collapsing two or more perfectly nested loops into one
much longer loop

Introduction to OpenMP 57

Collapsing loops : DO COLLAPSE(x) clause

REAL :: A(100,100,3), S

...

!$OMP PARALLEL DO &

!$OMP& REDUCTION(+:S)

DO K=1,3

DO J=1,100

DO I=1,100

S = S + A(I,J,K)

ENDDO

ENDDO

ENDDO

!$OMP END PARALLEL DO

REAL :: A(100,100,3), S

...

!$OMP PARALLEL DO COLLAPSE(3)

!$OMP& REDUCTION(+:S)

DO K=1,3

DO J=1,100

DO I=1,100

S = S + A(I,J,K)

ENDDO

ENDDO

ENDDO

!$OMP END PARALLEL DO

 Not always all participating threads end up doing the same
amount of work

- The total time is dictated by the slowest running thread

 Often programmer can only alleviate the problems as LI
maybe due to the nature of the problem, e.g.

- Low observation coverage in certain areas

- Scattered cloud cover

 To lessen the impact of LI one could try for example

- Try different SCHEDULE options (e.g. GUIDED, DYNAMIC)

- Limits the max number of participating threads (NUM_THREADS)

- Skip parallelization unless problems size of big e.g. IF (N > 1000)

- Use !$OMP TASK

Introduction to OpenMP 58

Load imbalance (LI)

 Modern CPUs have multilevel caches

 Data is accessed from caches in chunks

- Usually 64 bytes cache lines

- And even if you need just one byte from memory

 The same data item maybe needed by more than one thread

- Data consistency requires cache coherence logic through H/W

 When different threads modify successive memory locations
[falling potentially to the same cache line], then the cache
coherence logic forces these updates to be performed to the
all cache copies in all participating cores

- A huge performance penalty due to high rate of cache misses

- Fix : avoid writes to the successive memory locations by different

threads by using array padding or even over-dimensioning, or by

use of REDUCTION -clause

Introduction to OpenMP 59

False sharing

 In histogram calculations we extract bin-index from data

 Since bins may be adjacent – potentially falling into the same
cache line – then cache coherency protocol ensures that
every core (and therefore thread) has a consistent view of
histogram counts at any bin-index

Introduction to OpenMP 60

False sharing example & fix

REAL :: DATA(N)

INTEGER :: IDX,H(0:NB)

H(:) = 0 ! Histogram

!$OMP PARALLEL PRIVATE(IDX)

!$OMP DO

DO J=1,N

CALL GETBIN(DATA(J),IDX)

H(IDX) = H(IDX) + 1

ENDDO

!$OMP END DO

!$OMP END PARALLEL

REAL :: DATA(N)

INTEGER :: IDX,H(0:NB)

H(:) = 0 ! Histogram

!$OMP PARALLEL PRIVATE(IDX)

!$OMP DO REDUCTION(+:H)

DO J=1,N

CALL GETBIN(DATA(J),IDX)

H(IDX) = H(IDX) + 1

ENDDO

!$OMP END DO

!$OMP END PARALLEL

 Data race condition occurs when multiple threads attempt to
write the same memory location at once

 This is an error and results will be unpredictable

 To avoid race conditions, use DEFAULT(NONE) clause in your
!$OMP PARALLEL statement

- Forces you to think every single variable whether this is PRIVATE

or SHARED

- All SUBROUTINE/FUNCTION local variables are by default

PRIVATE, unless they have been declared to SAVE-variables

 Another way to avoid race conditions is to use CRITICAL
sections, ATOMIC constructs, OpenMP locks, !$OMP SINGLE ,
or !$OMP MASTER + BARRIER constructs

- But be aware that serialization hurts your parallel performance !!

Introduction to OpenMP 61

(Data) race condition

 It is unsafe to store to the same location
(scalar or array) from multiple threads of a
parallel region

 A safe & recommended strategy is to

- only read shared variables

- only write to non-shared variables

 parallel region PRIVATE variables

 subroutine local variables within parallel
region

 threads writing to different memory locations
in a module

Introduction to OpenMP 62

Ensuring safe execution of parallel OpenMP regions

!$OMP PARALLEL DO

DO J=1,N

CALL WORK(J)

ENDDO

!$OMP END PARALLEL DO

...

SUBROUTINE WORK(K)

USE MYMOD, ONLY : X, A

INTEGER K

X=A(K) ! X has read/write conflict

CALL SUB(X)

Storing data: Unsafe & Safe code snippets

63Introduction to OpenMP

!$OMP PARALLEL DO

DO J=1,N

CALL WORK(J)

ENDDO

!$OMP END PARALLEL DO

...

SUBROUTINE WORK(K)

USE MYMOD, ONLY : X, A

INTEGER K

A(K)=X ! Writing to different A(K) locations

CALL SUB(X)

Unsafe & Wrong

Safe to write

!$OMP PARALLEL DO

DO J=1,N

CALL WORK(J)

ENDDO

!$OMP END PARALLEL DO

...

SUBROUTINE WORK(K)

USE MYMOD, ONLY : M

IVAL = <calculation here>

!$OMP CRITICAL

M=M+IVAL

!$OMP END CRITICAL

Reduction example – all safe : Slow/Better/Fast

64Introduction to OpenMP

USE MYMOD, ONLY : M

IVAL=0

!$OMP PARALLEL DO &

!$OMP& REDUCTION(+:IVAL)

DO J=1,N

CALL WORK(J,IVAL)

ENDDO

!$OMP END PARALLEL DO

M=M+IVAL

...

SUBROUTINE WORK(K,KVAL)

IVAL = <calculation here>

KVAL = KVAL + IVAL

USE MYMOD, ONLY : M

INTEGER IVAL(N)

...

!$OMP PARALLEL DO

DO J=1,N

CALL WORK(J,IVAL(J))

ENDDO

!$OMP END PARALLEL DO

M=M+SUM(IVAL)

...

SUBROUTINE WORK(K,KVAL)

KVAL = <calculation here>

Slow

Better

Fast

Critical Region: Unsafe / Safe and Coolest !

L_DO_ONCE = .TRUE.

!$OMP PARALLEL

...

IF(L_DO_ONCE)THEN

!$OMP CRITICAL (REGION)

<executed only once>

L_DO_ONCE=.FALSE.

!$OMP END CRITICAL (REGION)

ENDIF

...

!$OMP END PARALLEL

65Introduction to OpenMP

L_DO_ONCE = .TRUE.

!$OMP PARALLEL

...

!$OMP CRITICAL (REGION)

IF(L_DO_ONCE)THEN

<executed only once>

L_DO_ONCE=.FALSE.

ENDIF

!$OMP END CRITICAL (REGION)

...

!$OMP END PARALLEL

!$OMP PARALLEL

...

!$OMP SINGLE

<executed only once>

!$OMP END SINGLE

!– Implicit BARRIER here --

...

!$OMP END PARALLEL

Unsafe & Wrong

Safe, but …

Coolest: $OMP SINGLE

 Consider a large 2D-grid with say 102400 x 102400 points

- 3rd dimension is fixed to say 137 levels

 Does not fit into memory of one compute node

- Need MPI & 2D domain decomposition with halo-areas (width = 4)

 Imagine a computer with 6,400 nodes with 16 cores/node

- Solving the problem with 102,400 MPI tasks, one for each core

- Each sub-grid reduces to a region of just 320 x 320 x L137

- Due to halo-areas EACH of many 3D-arrays is > 5% larger

- MPI internal data structures (& overhead) would also be excessive

 Using 16-way OpenMP we only need 6,400 MPI-tasks

- Decomposition for each MPI-task is now 1,280 x 1,280 x L137

- Less MPI overheads – and memory overhead alone ~ 1%

- But : OpenMP parallelism MUST now be almost perfect, too

Introduction to OpenMP 66

Why OpenMP with MPI saves memory over pure MPI?

QUESTIONS ?

Introduction to OpenMP 67

