
An Introduction to Parallel Programming

Paul Burton

January 2016

An Introduction to Parallel Programming

 Syntax is easy

- And can always be found in books/web pages if you can’t
remember!

 How to think about parallel programming is more difficult

- But it’s essential!

- A good mental model enables you to use the OpenMP and MPI we
will teach you

- It can be a struggle to start with

- Persevere!

 What this module will cover

- Revision : What does a parallel computer look like

- Different programming models and how to think about them

- What is needed for best performance

An Introduction to Parallel Programming

Introduction

What do we see? - How do we see!?

An Introduction to Parallel Programming

What does a computer do?

An Introduction to Parallel Programming

Memory Memory

Processor

Program

 Make the processor go faster

- Give it a faster clock (more operations per second)

 Give the processor more ability

- For example – allow it to calculate a square root

 But…

- It gets very expensive to keep doing this

- Need to keep packing more onto a single silicon chip

 Need to make everything smaller

- Chips get increasingly complex

 Take longer to design and debug

- Difficult and very expensive for memory speed to keep up

- Produce more and more heat

An Introduction to Parallel Programming

How do we make it go faster? [1]

 Introduce multiple processors

 Advantages:

- “Many hands make light work”

- Each individual processor can be less powerful

 Which means it’s cheaper to buy and run (less power)

 Disadvantages

- “Too many cooks spoil the broth”

- One task – many processors

 We need to think about how to share the task amongst them

 We need to co-ordinate carefully

- We need a new way of writing our programs

An Introduction to Parallel Programming

How do we make it go faster? [2]

 Parallelisation is not a limitless way to infinite
performance!

 Algorithms and computer hardware give limits on
performance

 Amdahl’s Law

- Consider an algorithm (program!)

- Some parts of it (fraction “p”) can be run in parallel

- Some parts of it (fraction “s”) cannot be run in parallel

 Nature of the algorithm

 Hardware constraints (writing to a disk for example)

- Takes time “t” to run on a single processor

- On “n” processors it takes : T = s x t + (p x t)/n

An Introduction to Parallel Programming

Limits to parallel performance?

 T = s x t + (p x t)/n

- Looks simple, but “s” has devastating consquences!

 Consider the case as the number of processors “n”
grows large, then we get:

- T = s x t + [something small]

 So our performance is limited by the non-parallel part of
our algorithm

An Introduction to Parallel Programming

Consequences of Amdahl’s Law [1]

 For example, assume we can parallelise 99% of our
algorithm, which takes 100 seconds on 1 processor.

 On 10 processors we get : T[10]= 0.01*100 + (0.99*100)/10

- T[10]=1 + 9.9 = 10.9 seconds

- 9.2 times speedup : not too bad - we’re “wasting” 8%

 But on 100 processors we get :

- T[100] = 1 + 0.99 = 1.99 seconds

- 50 times speedup : not so good – we’re “wasting” 50%

 And on 1000 processors we get :

- T[1000] = 1 + 0.099 = 1.099 seconds = 90 times speedup : terrible!

 We’re “wasting” 91%!

An Introduction to Parallel Programming

Consequences of Amdahl’s Law [2]

 Decompose (split) into parts

- Algorithm (the program) [eg. Car production line]

or

- Data [eg. Telephone call centre]

 Distribute the parts

- Multiple processors work simultaneously

 Algorithmic Considerations (algorithm/ data
dependencies)

- Need to ensure the work is properly synchronised

- Possibly need to communicate between processors

 Hardware Considerations

- What parallel architecture (hardware) are we using?

An Introduction to Parallel Programming

How do we program a parallel computer?

 Parallel programming technique will reflect the
architecture

An Introduction to Parallel Programming

Parallel architectures (revision)

M

P

M

P

M

P

M

P

Network

Distributed Memory

M

P P P P

Shared Memory

Shared memory programming

An Introduction to Parallel Programming

 Split (decompose) the computation

- “Functional parallelism”

 Each thread works on a subset of
the computation

 No communication

- Implicit through common memory

 Advantages

- Easier to program

 no communications

 no need to decompose data

 Disadvantages

- Memory contention?

- How do we split an algorithm?

M

P P P P

Each processor runs a

single “thread”

A simple program

An Introduction to Parallel Programming

INTEGER, PARAMETER :: SIZE=100

REAL, DIMENSION (SIZE) :: A,B,C,D,E,F

INTEGER :: i

! Read arrays A,B,C,D from a disk

CALL READ_DATA (A , B , C , D , 100)

! Calculate E=A+B

DO i = 1 , SIZE

E(i) = A(i) + B(i)

ENDDO

! Calculate F=C*D

DO i = 1 , SIZE

F(i) = C(i) * D(i)

ENDDO

! Write results

CALL WRITE_DATA(E , F , 100)

We’ll ignore this for

now…

 Split the function across the threads

- In the example we have two functions:
E=A+B and F=C*D

- But we have 4 processors (threads) – two would be idle 

 So what we do is split the computation of each loop
between the threads

 We need some new syntax to tell the compiler/computer
what we want it to do

- OpenMP – compiler directive

- For now we’ll just use some descriptive text

 We don’t really care which processor/thread does which
computations

- The shared memory means that each processor/thread can read/write to
any array element

An Introduction to Parallel Programming

A shared memory approach

Shared memory program

An Introduction to Parallel Programming

INTEGER, PARAMETER :: SIZE=100

REAL, DIMENSION (SIZE) :: A,B,C,D,E,F

INTEGER :: i

! Read arrays A,B,C,D from a disk

CALL READ_DATA (A , B , C , D , 100)

! Calculate E=A+B and F=C*D

! (Merged loops to fit onto slide!)

! OpenMP : Distribute loop over NPROC threads

! OpenMP : Private variables : i

DO i = 1 , SIZE

E(i) = A(i) + B(i)

F(i) = C(i) * D(i)

ENDDO

! Write results

CALL WRITE_DATA(E , F , 100)

This is easy on a

shared memory

machine as all

threads can

read/write to the

whole of each

array

 Usually before a loop

 Tells the computer

- How many threads to split the iterations of the loop between

- Any variables which are “private” (default is that variables are

“shared”)

 “private” – each thread has an independent version of the

variable

 “shared” – all threads can read/write the same variable

 The loop index must be private - each thread must have its

own independent loop index so that it can keep track of what

it’s doing

- Optionally some tips on how to split the iterations of the loop

between threads

An Introduction to Parallel Programming

Directives

 The program runs on a single processor P1 – as a single
thread.

 Until…

- It meets an OpenMP directive (typically before a loop)

- This starts up the other processors (P2,P3,P4) – each running a

single “thread”

 Each thread takes a “chunk” of computations

 This is repeated until all the computations are done

- When the loop is finished (ENDDO) all the other processors

(P2,P3,P4) go back to sleep, and execution continues on a single

thread running on processor P1

An Introduction to Parallel Programming

How to think about it

 Identify parts of the algorithm (typically loops) which can
be split (parallelised) between processors

 Possibly rewrite algorithm to allow it to be (more
efficiently) parallelised

- In our example we merged two loops – this can be more efficient

than starting up all the parallel threads multiple times

 For a given loop, identify any “private” variables

- eg. Loop index, partial sum etc.

 Insert a directive telling the computer how to split the
loop between processors

An Introduction to Parallel Programming

How to do it

 Split (decompose) the data

- “Data Parallelism”

 Each processor/task works on
a subset of the data

 Processors communicate over
the network

 Advantages

- Easily scalable (assuming a good

network)

 Disadvantages

- Need to think about how to split our

data

- Need to think about dependencies and

communications

An Introduction to Parallel Programming

Distributed memory programming

M

P

M

P

M

P

M

P

Network

Each processor runs a

single “task”

 Split (decompose) the data between the tasks

 We’ll need to do something clever for input/output of the
data

- We’ll ignore this for now

 Each task will compute its share of the full data set

- Shouldn’t be any problem with load balance (if we decompose the

data well)

 Computation is easy in this example

- No dependencies between different elements of the arrays

- If we had expressions like
A(i)=B(i-1)+B(i+1)

we would need to be a bit more clever…

An Introduction to Parallel Programming

A distributed memory approach [1]

 Split the data between processors

- Each processor will now have 25 (100 / 4) elements per array

- REAL, DIMENSION (SIZE/4) :: A,B,C,D,E,F

 Processor 1

- A(1) .. A(25) corresponds to
A(1) .. A(25) in the original (single processor code)

 Processor 2

- A(1) .. A(25) corresponds to
A(26) .. A(50) in the original (single processor code)

 Processor 3

- A(1) .. A(25) corresponds to
A(51) .. A(75) in the original (single processor code)

 Processor 4

- A(1) .. A(25) corresponds to
A(76) .. A(100) in the original (single processor code)

An Introduction to Parallel Programming

A distributed memory approach [2]

Distributed memory data mapping (array “A”)

An Introduction to Parallel Programming

A(1:100)

A(1:25)

A(1:25)

A(1:25)

A(1:25)

P1

P2

P3

P4

1

1

1

1

1

25

25

25

25

25

26 50 51 75 76 100

Distributed memory program

An Introduction to Parallel Programming

INTEGER, PARAMETER :: NPROC=4

INTEGER, PARAMETER :: SIZE=100/NPROC

REAL, DIMENSION (SIZE) :: A,B,C,D,E,F

INTEGER :: i

! Read arrays A,B,C,D from a disk

CALL READ_DATA (A , B , C , D , 100)

! Calculate E=A+B

DO i = 1 , SIZE

E(i) = A(i) + B(i)

ENDDO

! Calculate F=C*D

DO i = 1 , SIZE

F(i) = C(i) * D(i)

ENDDO

! Write results

CALL WRITE_DATA(E , F , 100)

We’ll ignore this for now

…

But it is very important

and will need attention!

 Each task runs its own copy of the program

 Each task’s data is private to it

 Each task operates on a subset of the data

 Sometimes there are dependencies between data on
different tasks

- Tasks must explicitly communicate with one another

- Message Passing key concepts

 One task sends a message to one or more other tasks

 These tasks receive the message

 Synchronisation : All (or subset of) tasks wait until they have

all reached a certain point

An Introduction to Parallel Programming

How to think about it

 Think about how to split (decompose) the data

- Minimize dependencies (which array dimension should we decompose?)

- Equal load balance (size of data and/or computation required)

- May need different decompositions in different parts of the code

 Add code to distribute input data across tasks

- And to collect when writing out

 Watch out for end cases / edge conditions

- For example code which implements a wrap-around at the boundaries

- First/Last item in a loop isn’t necessarily the real “edge” of the data on
every task

- Maybe some extra logic required to check

 Identify data dependencies

- Communicate data accordingly

- Add code to transpose data if changing decomposition

An Introduction to Parallel Programming

How to do it

Decomposing Data [1]

An Introduction to Parallel Programming

i

j

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

REAL, DIMENSION (12,4) :: OLD,NEW

DO j=1,4

DO i=2,11

NEW(i,j)=0.5*(OLD(i-1,j)+OLD(i+1,j))

ENDDO

ENDDO

 Let’s think about decomposing the “i” dimension

 How do we calculate element (3,1) – on P1?

- We need element (2,1) which is on P1 – OK

- And element (4,1) which is on P2 – Oh!

 So we need to do some message passing

An Introduction to Parallel Programming

Decomposing Data [2]

i

j

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

P1 P2 P3 P4

NEW(i,j)=0.5*(OLD(i-1,j)+OLD(i+1,j))

Decomposing Data [3]

An Introduction to Parallel Programming

 Let’s think about decomposing the “j” dimension

 Now no communication is needed

- This is a much better decomposition for this problem

 Not so easy in real life!

- Real codes often have dependencies in all dimensions

- Minimize communication or transpose

i

j

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

P1

NEW(i,j)=0.5*(OLD(i-1,j)+OLD(i+1,j))

P2

P3

P4

 Many (most!) HPC systems combine architectures

- A node is often a shared memory computer with a number of

processors and a single shared memory

- Memory is distributed between nodes

 Shared memory programming on a node

 Distributed memory programming between nodes

An Introduction to Parallel Programming

Shared & Distributed Memory programs

M

P P P P

M

P P P P

M

P P P P

M

P P P P

Network

 Aim to have an equal computational load on each
processor

- Some processors sit idle waiting for others to complete some

work

- Maximum efficiency is gained when all processors are working

An Introduction to Parallel Programming

Load Balancing

P1

P2

P3

P4

Work

Work

Work

Work

time

s
y
n
c
h
r
o
n
i
s
a
t
i
o
n

Idle/Waste

Idle/Waste

Idle

 Different sized data on different processors

- Array dimensions and NPROC mean it’s impossible to

decompose data equally between processors

 Change dimensions, or collapse loop:

A(13,7) -> A(13*7)

- Regular geographical decomposition may not have equal work

points (eg. land/sea not uniformly distributed around globe)

 Different decompositions required

 Different load for different data points

- Physical parameterisations such as convection, short wave

radiation

An Introduction to Parallel Programming

Causes of Load Imbalance

 Transpose data

- Change decomposition so as to minimize load imbalance

- Good solution if we can predict load per point (eg. land/sea)

 Implement a master/slave solution

- If we don’t know the load per point

An Introduction to Parallel Programming

Improving Load Balance : Distributed Memory

IF (L_MASTER) THEN

DO chunk=1,nchunks

Wait for message from a slave

Send DATA(offset(chunk)) to that slave

ENDDO

Send “Finished” message to all slaves

ELSEIF (L_SLAVE) THEN

Send message to MASTER to say I’m ready to start

WHILE (“Finished” message not received) DO

Receive DATA(chunk_size) from MASTER processor

Compute DATA

Send DATA back to MASTER

ENDWHILE

ENDIF

 Generally much easier

 In IFS we add an extra “artificial” dimension to arrays

- Allows arrays to be easily handled using OpenMP

 So we write loops like this:

 Make NCHUNKS >> NPROC

- Load balancing will happen automatically

 Other performance benefits by tuning inner loop size

An Introduction to Parallel Programming

Improving Load Balance : Shared memory

REAL, DIMENSION (SIZE/NCHUNKS,NCHUNKS) :: A,B

! OpenMP : Distribute loop over NPROC (NPROC<=NCHUNKS) processors

! OpenMP : Private variables : chunk,i

DO chunk=1,NCHUNKS

DO i=1,SIZE/NCHUNKS

B(i,chunk)=Some_Complicated_Function(A(I,chunk))

ENDDO

ENDDO

 The ratio between computation and communication

 “Fine-grain” parallelism

- Small number of compute instructions between synchronisations

- Reduces the changes needed to your algorithm

- Can amplify load balance problems

- Gives a high communications overhead

- Eventually the communications time will swamp the computation time

- Gets worse as you increase NPROC or decrease problem size

 “Coarse-grain” parallelism

- Long computations between communications

- Probably requires changes to your algorithm

- May get “natural” load balancing with more work with different inherent
load balance

 Best granularity is a dependent on your algorithm and
hardware

 Generally “coarse-grain” improves scalability
An Introduction to Parallel Programming

Granularity

 Identify parts of the program that can be executed in parallel

 Requires a thorough understanding of the algorithm

 Exploit any inherent parallelism which may exist

 Expose parallelism by

- Re-ordering the algorithm

- Tweaking to remove dependencies

- Complete reformulation to a new more parallel algorithm

- Google is your friend!

 You’re unlikely to be the first person to try and parallelise a

given algorithm!

An Introduction to Parallel Programming

Steps to parallelisation (1)

 Decompose the program

- Probably a combination of

 Data parallelism (hard!) for distributed memory

 Functional parallelism (easier, hopefully!) for shared

memory

- If you’re likely to need more than a few 10’s of processors to run

your problem then a distributed memory solution will be required

 Shared memory parallelism can be added as a second step,

and can be added to individual parts of the algorithm in

stages

- Identify the key data structures and data dependencies and how

best to decompose them

An Introduction to Parallel Programming

Steps to parallelisation (2)

 Code development

- Parallelisation may be influenced by your machine’s architecture

 But try to have a flexible design – you won’t use this

machine for ever!

- Decompose key data structures

- Add new data structures to describe and control the

decomposition (eg. offsets, mapping to/from global data,

neighbour identification)

- Identify data dependencies and add the necessary

communications

 And finally, the fun bit : CAT & DOG

- Compile And Test

- Debug, Optimise and Google!

An Introduction to Parallel Programming

Steps to parallelisation (3)

 Which do you think is easier to understand?

- Distributed memory parallelism (message passing) or shared

memory parallelism

 Which do you think is easier is implement?

 Which do you think might be easier to debug?

- Can you imagine the kind of errors that you might make and how

you might be able to find them?

 Do you think one may be more scalable than the other?
Why?

 Why should we have to do all this work anyway. Why
can’t the compiler do it all for us?

COM INTRO: Interpolation © ECMWF 2015 38

Some questions to think about…

