
PBS12+ECMWF 1

(© Cray Inc 2016)

DEBUGGING EXAMPLES
Oh no! The VH1 example has developed three nasty bugs and only you can fix them.

 ____ _ _ ____

 | __)| | | |/ ___|

 | _ \| | | | | _

 | |_) | |_| | |_| |

 |____/ ___/ ____|

) (

 _ _ _ _ _ _ _ _ _ _ _(.--.)

 {{ { { { { { { { { { { ('_')

 >>>>>>>>>>>>>>>>>>>>>>>`--'>

Try and use some to the tools described in this document to fix the issues that you’re seeing

with the application.

Some things you might need to remember when staring off:

 VH1 requires the cray-netcdf module be loaded to build.

 You don’t need perftools so unload it if you have it loaded from a previous exercise.

 You might also want to change the Makefile so that compilation includes debugging.

E.g. for the Cray compiler, in src/Makefile change FFLAGS_CRAY = -O2 –emf to

FFLAGS_CRAY = -g –emf, then do make clean followed by make.

In no particular order:

ATP (ABNORMAL TERMINATION PROCESSING)
FOR WHEN THINGS GO WRONG UNEXPECTEDLY

ATP kicks in when an application issues a signal indicating it has encountered a problem. This

can range from a segmentation violation to a termination signal indicating that the application

has run to long. ATP requires the environment variable

export ATP_ENABLED=1

To be set in the run script before it can become active.

PBS12+ECMWF 2

Once activated and triggered via a signal, ATP will attempt to provide three types of diagnostic

information to the user:

1. A backtrace of the PE that first generated the signal detected by ATP. This is printed to

stderr so can usually be found in either the PBS error file, or the PBS output file output

has been joined.

2. A merged back trace that provides a succinct visual representation of all the backtraces

from all ranks in an application at failure. These are left in the working directory of the

run and are killed:

a. atpMergedBT.dot – Backtraces merged by function name only (smaller

number of branches)

b. atpMergedBT_line.dot – Backtraces merged by function name and line

number (more accurate but larger trace)

These can be visualised using the stat-view visualisation tool (though in essence they

are standard GraphViz DOT files). To this run:

module load stat

stat-view atpMergeBT.dot

3. A selection of core files, each one representing a PE which is a member of one of the

equivalence sets of the merged backtrace. i.e. a PE that is in a different terminal leaf of

the merged backtrace tree. Files will be uniquely identified to a specific run and name

via their name in the form core.atp.<apid>.<PE>.

Remember, however, that core files will only be created if they have been enabled in the

batch run script, this can be done by adding the following line before the aprun

command.

ulimit –c unlimited

GETTING INTERACTIVE WITH PBS
Most Cray XC30s are configured not to allow directive interactive, on-demand access to their

compute nodes. Instead resources must be requested via a batch scheduling system. In most

cases this involves creating a run script that will be executed once the scheduler provides the

required resources, however PBS allows users to request an interactive session instead.

This interactive session comes in the form of a direct connection with the PBS MOM node and

allows users to interactively issue commands in lieu of submitting a script, perfect for

debugging applications when you need quick turn around when resubmitting the same parallel

application.

To request an interactive session, pass the standard resource requests to a qsub command, but

in addition add –I, e.g.

qsub -l EC_nodes=4 -l walltime=0:20:00 -q np -I

Once an interactive session has been requested, the job enters the batch system just like any

other job and must wait until its resources are allocated and the qsub command will block after

printing the message:

PBS12+ECMWF 3

qsub: waiting for job 127743.sdb to start

When the resources become available the following message will appear

qsub: job 127743.sdb ready

And a new interactive login shell will be spawned. Users can then issue command in this

interactive shell just as they would a normal shell with the exception that requests to aprun will

succeed as there are dedicated compute nodes available for use.

Warning: The time between job submission and resources becoming available can potentially

very long. It is very easy for users to forget they have pending sessions and end up paying for

large amounts resource that goes unused! Consider setting an appropriate walltime limit.

Once you have an Interactive login session you can use it for debugging with:

STAT: FOR WHEN THINGS APPEAR TO BE HANGING
The Stack Trace Analysis Tool (STAT) is the parent tool of ATP, it was designed to provide a

snapshot back trace of an entire application, specifically when it appears to be in deadlock or

hung for some reason. It can be activated either as part of a batch job, or as via of an interactive

session (see Getting interactive with PBS above for more information on starting interactive

sessions).

Batch STAT
If your application reliably enters a hung state then STAT can be incorporated into the batch

script to initiate a whole application backtrace at a set time interval. This is done by wrapping

the aprun launch command with the STAT executable after the stat module has been loaded. e.g.

Module load stat

stat-cl –s 30 –C aprun –n 24 –N24 vh1-cray-exe

The –s <n> option indicates that STAT should wait <n> seconds and then attempt to perform the

snapshot. Therefore this value should be sufficiently large that the application can be reliably

assumed to be in the hung state.

Two new directories are then created underneath one-another in the working directory:

stat_results/<exe>.<snapshot>/

Inside there will be a snapshot file

<exe>.0000.3D.dot

Which can be rendered using the stat-view program

module load stat; stat-view <exe>.0000.3D.dot

Interactive STAT

PBS12+ECMWF 4

If your job does not hang repeatedly and hence you cannot use a timer to take a snapshot it is

possible to use an interactive shell to run your script.

First, request an interactive session from the PBS scheduler, when that is ready run

Once the job has started, you can launch your standard run script in the background, e.g.

run_ECMWF.pbs &

However you may need to set any EC_ environment variables that your script needs. Once the

job is running you need to identify the PID of the aprun command launch command, e.g.

ps aux | grep $USER | grep aprun

This may produce two aprun commands, e.g.

tedwards 13771 0.1 0.0 47600 2388 pts/5 tl 10:02 0:00 aprun -n 24 -N 24 ./vh1-mpi-cray

tedwards 13779 0.4 0.0 47336 1396 pts/5 S 10:02 0:00 aprun -n 24 -N 24 ./vh1-mpi-cray

Select the larger of the two PIDs and use this for STAT.

stat-cl <pid>

We would recommend running multiple times, producing multiple snapshots, incrementing the

value under the stat_results file. They can be viewed in the same way using statview.

LGDB: THE COMMAND-LINE PARALLEL DEBUGGER
Before going any further, it is recommended to rebuild the executable vh1-mpi-cray to include

debugging information. (Please see note on page 1.)

To access LGDB load the module at the command line

module load cray-lgdb

Attaching to a running program
Find the apid of the running process using apstat

 Apid ResId User PEs Nodes Age State Command

27349 12089 tedwards 24 1 0h00m run vh1-mpi-cray

Launch lgdb with:

lgdb

And from the lgdb shell attach to the program as follows

attach $<pset> <apid>

Launching a new application
Debugging with lgdb may be achieved either by using an interactive session from PBS or by

submitting a slightly modified PBS script from a batch session. To request a new interactive

session from PBS (See Getting Interactive with PBS) proceed as follows.

PBS12+ECMWF 5

Launch lgdb with:

lgdb

And from the lgdb shell run

launch $pset{nprocs} <exe> --aprun-args=”-N 24”

to launch using nprocs processes and the additional aprun arguments provided.

To use lgdb without the need for an interactive session, firstly, modify your existing PBS script

by placing the comments #cray_debug_start and #cray_debug_end around the aprun

command that is to be debugged. Everything between the comment lines will be ignored; the

aprun command must then be recreated through the launch command arguments within lgdb.

For example, the job script sample.pbs is modified with the lgdb comments:

#cray_debug_start

aprun -n128 -N32 a.out

#cray_debug_end

The following launch command will then submit sample.pbs as a PBS job from within which

the application a.out will be launched:

dgb all> launch $a{128} --aprun-args="-N32" --qsub=sample.pbs a.out

NB: for the example, if you are debugging with lgdb with an interactive session, then please be

careful to ensure that the files indat, vh1-mpi-cray, and a directory called output are all

present in the current directory before executing launch (look at the original .pbs file to check),

e.g. from within the interactive session:

RUNDIR=${ROOTDIR}/${PBS_JOBID}

BINDIR=${ROOTDIR}/../bin

Create the output directory

mkdir -p ${RUNDIR}/

mkdir -p ${RUNDIR}/output

cd ${RUNDIR}

cp ${ROOTDIR}/indat ${RUNDIR}

cp ${BINDIR}/${EXE} ${RUNDIR}

lgdb

When debugging with lgdb you may need to use continue to step through after the initial

breakpoint.

For further information you can use the interactive help:

dbg all> help

See man lgdb for more information on how to use lgdb.

PBS12+ECMWF 6

Comparative Debugging
LGDB contains the Cray comparative debugger… advanced users may which to refer to “Using

the Cray Comparative Debugger” document, (S-0042-22) available under http://docs.cray.com

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-0042-

22;idx=books_search;this_sort=title;q=0042;type=books;title=Using%20the%20lgdb%20Comp

arative%20Debugging%20Feature

OLD-STYLE NAMING AND SYNTAX
Note that in a previous release the STAT commands had different names (STAT, STATview etc.)

Also the –launcher-args option for lgdb used to be –aprun-args

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-0042-22;idx=books_search;this_sort=title;q=0042;type=books;title=Using%20the%20lgdb%20Comparative%20Debugging%20Feature
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-0042-22;idx=books_search;this_sort=title;q=0042;type=books;title=Using%20the%20lgdb%20Comparative%20Debugging%20Feature
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-0042-22;idx=books_search;this_sort=title;q=0042;type=books;title=Using%20the%20lgdb%20Comparative%20Debugging%20Feature

