®
\
cCcRAY |
[\

\

More on Application profiling
and optimization

Agenda A

e Optimizing source code and controlling the compiler .
e A Tour of the Apprentice2 GUI

e Optimizations for MPI — Rank Reordering

Doesn't the compiler do everything? Ao

e Not yet...

e Standard answer, unchanged for last 50 or so years \

e What does it do

It tries to compile the loops in your application to be as fast as possible

Performance depends on reducing memory use and using the best
machine instructions (vectorization)

This means your code may be significantly transformed

e What can you do

Work out what you care about (profile)

Experiment with alternative source implementations but a lot of
expertise is needed here

Give the compiler additional information

Use compiler output to determine what it is doing and influence it via
directives

COMPUTE | STORE | ANALYZE

Loop optimisation techniques CooN

e Most HPC codes are loop-based \
e Repeatedly process all the elements of an array

e There are various optimization techniques for loops
e unrolling/unwinding
e Stripmining
e blocking/tiling

e \We are not going to explain HOW to do this manually but it
IS useful to be aware of these even if you are not going to
optimise source

e In many cases, the compiler does these automatically
e the material here will help you understand what the compiler did
e if necessary, you can then step in to assist the compiler

COMPUTE | STORE | ANALYZE

18-Jan-1é6 @

EXAMPLE 1: Loop unrolling/unwinding SOON

e Unrolling and unwinding are equivalent terms :

e Replaces a loop by an equivalent set of statements

e Removes the overhead of loop control logic
e incrementing the loop index counter
e checking if the counter has exceeded the loop bounds

e Most important for small tripcount/low work loops
e Especially when nested inside other loops
e Full unwinding requires tripcount to be known at compile time

Original code After unwinding

do i=1,N
a(i)=a(i) + b(i)

18-Jan-1é6

enddo

a(i) =a(i) + b(i)
a(i+l)=a(i+1) + b(i+1)
a(i+2)=a(i+2) + b(i+2)

a(N) =a(N) + b(N)

COMPUTE

STORE | ANALYZE

Example 2: Loop blocking/tiling SOON

e Applied to multi-dimensional loopnests
e Two or more loops are stripmined
e Loop interchange moves the strip loops innermost

e Most often used to preserve memory locality

Original loopnest Equivalent explicit code

do j = 1,Nj do jb = 1,Nj,16
do i = 1,Ni do ib = 1,Ni,16
Istencil do j = jb,jb+16-1
enddo do i = ib,ib+16-1
enddo Istencil
enddo
enddo
enddo
enddo

e (strictly, upper strip loop limits should be MIN(Nj,jb+16-1) and similar)

Control: Example blocking with Cray Directives S

e CCE blocks well, but it sometimes blocks better with help

Original loopnest |Loopnest with help Equivalent explicit code |

IDIR$ BLOCKABLE(7j,k) do kb = 1,Nk,16
ldir$ BLOCKINGSIZE(16) do jb = 1,Nj,20
do k = 1,Nk do k = 1,Nk 6 1S = Mopldgoodt
Idir$ BLOCKINGSIZE(20) @ 3 = o,
. . . . do i = 6, nx-5
de = it (@ 3 = L1 I stencil
do i = 1,Ni do i = 1,Ni enddo
I stencil I stencil enddo
enddo enddo enddo
enddo enddo enddo
enddo enddo enddo

e (again, upper limits should be MIN(Nk,kb+16-1) and similar)

e Get the loopmark listing
¢ ldentifies which loops were blocked
e Gives the block size the compiler chose

Example 3: Loop interchange A

e One of the simplest cache optimisations
e aim to access consecutive elements of arrays in order

e If multi-dimensional arrays addressed in wrong order
e causes a lot of cache misses = bad performance

e Order loops in loopnest with fastest innermost
e Fortran is column-major (LH array index moves fastest)
e C/C++is row-major (RH array index moves fastest)

e Compiler may re-order loops automatically (see loopmark)

Original loopnest interchanged code

do i = 1,N do j = 1,N
do j = 1,N do i = 1,N
tot = tot + a(i,j) tot = tot + a(i,j)
enddo enddo
enddo enddo
COMPUTE | STORE | ANALYZE

Optimization for memory access, huge pages = RIS

e Various loop transformations we have seen A
e Help with memory access order
e This makes more efficient use of cache

e Use as much cache as possible
e Reuse data when it is in cache

e There is a level beyond cache size to consider

e We have virtual memory pages which map to physical
pages

e The OS keeps track of this in hardware (TLB) and software

e As aresult we should try to reuse memory within a page

COMPUTE | STORE | ANALYZE

18-Jan-1é6 @

Using hugepages

e Load chosen craype-hugepages* module
e See module avail craype-hugepages for list of available options

e Compile as before

e Execute as before, but

e Make sure this module is also loaded in PBS jobscript
e It sets various environment variables

e Which pagesize is best?
e You should try different settings
e 2M or 8M are usually most successful on Cray XC systems

o Qumk cheat:
no need to rebuild to try a different pagesize
e can load different hugepages module at runtime
e compared to that used at compile-time
e compile-time module enables hugepages in the application
e runtime module determines the actual size that is used

e See man intro_hugepages for more details

COMPUTE | STORE | ANALYZE

Vectorisation O

e The most important optimization is for memory access .
e Then we can think of optimising computation
e This will be in loops

e Usually only one loop is vectorisable in loopnest
e And most compilers (not CCE) only consider inner loop

e Optimising compilers will use vector instructions
e Relies on code being vectorisable
e Orin a form that the compiler can convert to be vectorisable
e Some compilers are better at this than others
e Check the compiler output listing and/or assembler listing
e Look for packed SSE/AVX instructions

COMPUTE | STORE | ANALYZE

18-Jan-1é6 @

Helping vectorisation O
e |s there a good reason for this?)

e There is an overhead in setting up vectorisation; maybe it's not worth it
e Could you unroll inner (or outer) loop to provide more work?

e Does the loop have dependencies?

e information carried between iterations
e €.0. counter: total = total + a(i)

e If there are no loop dependencies:

e Tell the compiler that it is safe to vectorise
e IVDEP directive above loop (CCE, but works with most compilers)
e C99: restrict keyword (or compile with -hrestrict=a with CCE)

e Perhaps the dependencies are between iterations i and i+8
e Then it is safe to vectorise with vectors of length 8 or less
e Use directive: IVDEP SAFEVL=8

e see man ivdep for more detalls

COMPUTE | STORE | ANALYZE

\

Inhibitors to vectorisation

e loop dependencies:
e The loop cannot be executed in any order
e Might be hard to rewrite code to fix this

e Code is not aloop (do while)

e Indirect addressing

e Non-vectorisable functions

e Unknown loop trip count

e Function calls in loop need to be inlined

e Check the compiler output to see what it did
e CCE: -hlist=a

e Intel: -vec-report[0..5]
e GNU: -ftree-vectorizer-verbose=5
COMPUTE | STORE | ANALYZE

18-Jan-1é6

CCE directives

Some useful CCE directives .

e Compiler directives avoid the need for explicit coding

e They are compiler-specific but should be ignored as comments by:
e Other compilers
e the same compiler, if overridden by compiler options

e CCE has alarge set of optimisation directives
e Fortran: 'DIR$ <directive>

e C/C++: #pragma CRI <directive>
e CRI optional; include it so compiler warns about unrecognised directives

e Some useful ones are listed on the next few slides

e For more information:
e man directives
e man <directive name>
e Fortran, C/C++ Reference Manuals on docs.cray.com

COMPUTE | STORE | ANALYZE

18-Jan-1é6

http://docs.cray.com/books/S-3901-83/S-3901-83.pdf
http://docs.cray.com/books/S-3901-83/S-3901-83.pdf
http://docs.cray.com/books/S-2179-83/S-2179-83.pdf
http://docs.cray.com/

Selected CCE scalar optimisation directives RIS

o INTERCHANGE (i,j...), NOINTERCHANGE
e Specified loops should be interchanged, e.g. (i,j,k) -> (k,j,1) \
e NOINTERCHANGE directive suppresses loop interchange

e UNROLL [n], NOUNROLL
e Specify unrolling of next loop, with optional unroll factor

e BLOCKABLE (ijj...)

e Specified loops can be blocked

e NOBLOCKING directive prevents blocking
e BLOCKINGSIZE (n)

e Apply blocking factor n to next loop
e Use separate BLOCKINGSIZE directives for each loop to be blocked

e FUSION, NOFUSION, NOFISSION

e Control loop fusion and fission of specified loop
COMPUTE | STORE | ANALYZE

18-Jan-1é6 @

Selected CCE vectorisation directives (1) V0N

e IVDEP
e Ignore dependencies in the next loop that might inhibit vectorisation \

e NEXTSCALAR
e Do not vectorise the next loop

e PREFERVECTOR

e |f more than one loop in nest can be vectorised, indicates preference
e Has the same effect as VECTOR ALWAYS directive

e NOVECTOR

e Disable vectorisation for rest of program unit;
e reset behaviour with VECTOR directive

COMPUTE | STORE | ANALYZE

18-Jan-1é6

Selected CCE vectorisation directives (2) S St

S \
\

e LOOP_INFO [min_trips(c)] [est_trips(c)] [max_trips(c)]

e Provide information on min/mean/max tripcounts for loop |

e PROBABILITY

e Indicate probability of a conditional being true
e May suggest compiler uses gather/scatter methods to vectorise loop

e PERMUTATION

e The specified integer array does not have repeated values
e Useful for index array used in indirect addressing

e CONCURRENT

e Stronger than IVDEP
e IVDEP says loop iterations independent in current order
e CONCURRENT says independent in any order
e Both CONCURRENT and IVDEP should allow (possible) vectorisation

COMPUTE | STORE | ANALYZE

18-Jan-1é6

\
: cR=RAY |
Concluding remarks SO08

A \
e Compilers are good at optimising code, but not perfect
e If you do nothing else with your code \
e Make sure you address arrays in the "right" order
e Check the compiler feedback to see its not doing anything foolish

e To go further:

e Understand what the compiler does

e Look at the compiler feedback in more detail

e Use profiling and hardware counters to see if these optimisations work
e Help the compiler to understand your code

e Simpler code is usually a good place to start

e Use directives to give the compiler more information about your code
e Only start hand-coding optimisations as a last resort

e And remember to keep profiling your code

e optimise the things that take most time
COMPUTE | STORE | ANALYZE

\
cCcRAY |
[\

A tour of the Apprentice2 GUI

The Three Stages of Profiling with perftools cRAaYY
and CrayPat .

1. Instrumentation
e Build executable of an instrumented version of your application

2. Running your application and Data Collection
e Run the instrumented version of your application
e Transparent collection via CrayPat’s run-time library

3. Analysis: Sampling / Tracing
e Interpret and visualize data using post-mortem tools:
1. pat_report: a command line tool for generating text reports

2. Cray Apprentice2: a graphical performance analysis tool
3. Reveal: graphical performance analysis and code restructuring tool

COMPUTE | STORE | ANALYZE

\
cCcRAY |
[\

Profile Visualization with
Cray Apprentice2

Cray Apprentice2

e Features:

Call graph profile
Communication statistics

e Helps identify:
Load imbalance

Excessive communication

o o
e Time-line view e Network contention
e Communication e EXcessive serialization
e 1/O e |/O Problems
e Activity view
e Pair-wise communication
statistics
e Textreports
e Source code mapping
COMPUTE | STORE | ANALYZE

To use Cray Apprentice? R

e You can run app2 on the login nodes:
e You need an X session
e ssh -X <system name>
e and software to catch X windows on your local machine
e You need app2 in your path
e module load perftools-base

e The *.ap2 file contains the information (produced by pat_report)
e app2 data_file name.ap2
e Or you can load the ap2 file from the GUI

e There is also a client version of app2
e You can run this on your local machine
e Contact your site administrator for details on how to install this
e Then just need to copy the *.ap2 file to this machine

COMPUTE | STORE | ANALYZE

Cray Apprentice?

Apprentice2 (on eslogin006)
File Help

w About Apprentice2) ¥ Espressotpat+47254-3184t.ap2 ﬁl

Profile

CPU l| '

Memory Utilization
Process HiMem (MBytes) 34.779

Function/Region Profile

40.7% = MPI Waitall
18.9% = calc_... orce_parts
6.1% = MPI Recv

Programming_Model
- H93% 10101 10101

Load Imbalance

10011] _ (10011

Data Movement

4495 = MPI_Waiall _
2.655 = calc_... orce_parts MPI Msg MBytes 944.003

1.46s = MPI Recv

Wallcleck time: 60,000000s

Espresso+pat+47254-3184t.ap2 (54,192 events in 0,2555) y |

Statistics Overview: Pie Chart

e <P B B E

Sort by Calfs

Note that report toolbar ONLY
what you have decide to collected
with pat_build

Data tab: shows the name
of the data file currently
displayed

Report toolbar: show the
reports that can be
displayed for the data
currently selected

Report tabs: show the
reports

. On many reports, the total

duration of the experiment
Is shown as a graduated
bar at the bottom of the
window

. Change view from pie

chart to bar graph
Help menu

Statistics O lew: Bar Graph
atistics overview: barlr Grap «
\
File Help |
w swimn+tr 1 BpLap2 |
ey GPHMEXE
W Overview |
Function Callz Tirne -
calel_ o [
cale?_] |
caled_ —
caledz_
inital_
hAAIN_
MP1_Cornrn_rank
MWPI_Cornrn_size
MWP1_Finalize
MP1_Init
MWPI_lrecy [=
MP1_lzend [
WP 1_Recuce
MP1_Tywpe_get_true_extent
WP 1_Waitall =]
zer Fegion: Calci]
User Region: Calc2
User Region: Calc3 |
User Region: Do 100]
User Fegion: Do 200 I |
User Region: Do 300]
User Fegion: Inital
B S04 3 Fe+04 i 44 ga [~
0.00 0.45 0.81 1.36 1.62

Function Profile View

File Help |
W swim+iompi+1566td.ap2 ¥ Trhw1+swh+io+mpi+48p.ap2 |
g = = : =
ey a0 H uE
W Overview vFunctionI
Time | Percend Hifsl Callsites | Imbalance % Ps‘:uhi?n'gi's] Function Line | File =
124175511 63.29 576 1 563 015 sweep_ 116 Nushid00036AdriAppsisweep3disweep. f
40211774 2050 118080 1 23.40 0.25 mpi_recy_ 0 ==NA==
16.319527 832 43 1 43.26 0.30 exit 35 /notbackedupiusersirsrelys64 REL_1_4_33.060914 Thu/pelcomputelibsiglibeistdiiblexit.c
6173236 3.5 1536 3 50.00 0.12 mpi_allreduce_ 0 ==NA==
2760376 1.41 118080 1 17.58 0.01 mpi_send_ 0 ==NA==
2250029 1.15 576 1 262 0.00 source_ 18 Mushid00036drAppsisweep3disource.f
1984620 1.01 144 1 259 0.00 mpi_barrier_ 0 ==NA==
0867358 044 192 2 247 0.00 mpi_bcast_ 0 ==NA==
0416231 021 576 1 260 0.00 flux_err_ 17 NMushid000361driAppsisweep3diflux_err f
0382130 0.19 118080 2 10.98 0.00 snd_real_ 135 NMushid00036Adr/appsisweep3dimpi_stuff.f
0237772 0412 309 1 95.76 0.07 fwrite 36 /notbackedupiusersirsrellrsB4 REL_1_4_33.060914 Thupelcomputelibsiglibclibiofofwrite c
0.185067 0.09 118080 2 17.30 0.00 rev_real_ 164 Mushid00036AdriAppsisweep3dimpi_stuff.f
0067832 003 43 1 456 0.00 initialize_ 42 Nushid00036AdriAppsisweep3dinitialize.
0059407 003 45 1 499 0.00 initxs_ 77 Nushid00036AdriAppsisweep3dinitialize.
0041371 002 45 1 23.84 0.00 inner_ 72 Nusinid00036AdriAppsisweep3dinner .f
0023943 001 E5] 1 0.00 fputc 35 /notbackedupiusersirsrelys6d4 REL_1_4_33.060914 Thu/pelcomputelibsiglibedibioifpute .o
0016902 001 63 1 0.00 getc 36 /notbackedupiusersirsrelrs6d4 REL_1_4_33.060914 Thu/pelcomputelibsiglibelibioigetc .o
0003104 000 4992 2 25.14 0.00 octant_ 17 Nushid000361Adridppsisweep3dioctant £
0.002457 0.00 576 1 18.79 0.00 global_real_max_ 321 NMushid000361dr/appsisweep3dimpi_stuff.f
0002083 0.00 45 1 B69.55 000 MAIN_ 72 Nushid00036AdriAppsisweep3didriver £
0001588 0.00 576 1 39.10 0.00 global_int_sum_ 373 NMushid000361dr/appsisweep3dimpi_stuff.f
0001393 0.00 438 1 10.23 0.00 inner_auto_ 69 Jushid000361drfAppsisweep3dinner _auto.f
0000982 0.00 45 1 97.74 0.00 task_init_ 24 Nusinid00036Adri2ppsisweep3dimpi_stuff.f
0000739 0.00 384 2 27.87 0.00 global_real_sum_ 347 Mushid000361dr/appsisweep3dimpi_stuff.f
0.000662 0.00 2 1 0.00 fopen 106 iothackeduplusersirsrelirs64 . REL_1_4_33.060914 Thuieicomputelibs/glibclibiofofopen.c
0000498 0.00 45 1 754 0.00 initsnc_ 175 NMushid000361dr/appsisweep3dinitialize.f _'J
[« [2
EfOO 1 Il = 2.LEI 3.f|45 4.8kl

: . CcC=RAY |
Load Balance View (Aggregated from Overview) CooN
)
By clicking on a give function, we can show the breakdown per each PE %

= Help |

W syeep3d+r-u+mpi9tn.ap2 | w swim+r 1 Bp ap2 I :

@ey 8 M

 Civervigw | ¥ Loadl Balance |

FE Calls
FE #37[
FE #34]
FE #7499 .
e Function
FPE #71
FE #78]
FE #53]
FE #70)
FE #55|
PE #93]
PE #52,
FE #54]
FE #32,
FE #35|
FPE #91
PE #54]

[r]

FE #59)
FE #77)
PE #90)
PE #53
FE #51
FE #58]
FE #75|
PE #53]
PE 60|
FE #82
FE #39
FE #57)
PE #75]
PE #35]
PE #22
FE #29)

2 Ge+03

4

0.00

+1 std deviation

Call Tree View

File

GeVECHME®

elp

woOverview ¥ v Call Graph x|

(L

Height <> Max time

oad balance overview:

~

calc3
(¢=0.0221 e=0.4705)

i "L Ganf Filtered
(c=0,3901 €20.2933)
nodes or
(c=01385% S250.5031) SUb tree

Middle bar <> Average s
time \
Lower bar <> Min time o DUH Button:
Yellow represents LY ey Provides hints
imbalance time - for performance
\ tuning
LB J
Function
List Zoom
lz /4 ﬁ
| | N

Call Tree View — Function List

File

Help

Ay E0 R ME

Right mouse click:
Node menu

wOverview X W Call Graph xl

“Info ~

ImbTimeIName
0.3702 mpi_waitall_[7]
0.3103 mpi_waitall_[4]
0.1586 mpi_waitall_[10]
0.1226 mpi_waitall_[6]
0.1108 mpi_waitall_[1]
0.1017 mpi_waitall_[3]
0.0917 calcl_

Right mouse click:
View menu:
e.g., Filter

0.0673 calc3_

0.0649 calc2_

0.0249 mpi_waitall_[9]
0.0161 mpi_isend_[13]
0.0129 mpi_irecv_[10]
0.0117 mpi_isend_[10]
0.0090 mpi_waitall_[0]
0.0084 mpi_isend_[7]
0.0072 mpi_irecv_[13]
0.0070 mpi_isend_[4]
0.0065 mpi_irecv_[4]

0.0048 mpi_irecv_[7]

(¢=0.0

calc3_
221 e=0.4705)

calc2
(c=0,3803 €=0.5031)

e.g., hide/unhide E
children

0.0031 mpi_waitall_[2] Sort OptiOIlS i ‘/f mpj waitall (7]

0.0029 mpi_reduce_(sync) il 8 B

0.0025 mpi waitall_[5] % Tlme ‘ikﬁ&.‘éi’g’s?’

0.0001 mpi_reduce_ . ?

0.0000 mpi_waitall_[8] Tlme

0.0000 mpi_irecv_[18] ? 0

0.0000 mpi_isend_[16] Imbalal’lce % mpi|waitall [4] —

0.0000 mpi finalize_ . (¢033225)

0.0000 mpi_comm_ra Imbalance tlme

0.0000 mpi_init_

0.0000 mpi_co
e b1 Function
% | i ei Imb % |x bTi . v
Il —_ Listoff]
4 ﬂl T o\
A | | | A
0.00 0.56 112 1,68 224

Call Tree Visualization —_——

' sweep3d.mpi.seal.PE2130.pat431.mod10.pat-u-gmpi.seal.48cores.rt_sumD.ap2 I ;Iilﬁ]
Eile Help

@eYVIB ME

wOverview X ¥ Call Graph X]

l (c=28 s e 0031) ‘ (c=0. s*p'-r'u':‘ LToroooo)
’ (c=25.1478%=0.4220) ‘ (c.é’.%:&%%!:"&q}%loo)
(cmo. o5 S0 0msn | AR e | | oLy R o 1
L (c=1.3738 e2a,1107)
S | |

——

(C'°fd:éﬁ!=m%50k-o # r‘::rlﬂluln'm)(c-o é‘&if"ﬂ”onx:-:’ég!’o"#& Jo21)
el mpEane

mpi_s -l(lredufsasilasnc) 31

ﬂ Search:l ﬂl Q
A

0.00 6.61 13.22 19.83 26.44

I Zi

Discrete Unit of Help (DUH Button)

Eile

=181

Help

ey HEMUEX

wOverview X ¥ Call Graph X]

LS T \

inner,
(c=25.1475 e=0.4220) ‘

(c=0. 0'5’!"‘"4.0131) ’ (c

Lint_sum

1558 =% "5 bv0)

|

(<2835

mpi_allr

(e=19.5

i

Byne) 131

orn: ..J_J- o .).(.l

Function 'inner ' has the highest load imbalance time
(19.770283 seconds) and is therefore a candidate for further
examination for performance optimization.

Imbalance time provides an estimate of how much time would
be saved for the overall program if the corresponding area of
the application had perfect balance.

To identify functions with notable load imbalance, look for 'tall*
or'wide' boxes with lots of yellow. Remember that an
imbalance that shows up at one point in the call tree may be
due to an imbalance that occurred further up in the call tree.
To see values for the imbalance time and percentage, hover
over the function.

*zu init|
(c=0.537 .-o 000)

i_b
mp(

A

K|

[»]

ﬂ Search:l

EEY

J (O

0.00

13.22

26.44

4

W sweepnSd+mpisEp+tr xml.gz |

@ ey <OH M

Pyl

w Overview | W Trafiic Report | w Activity | w Call Graph ¥ sweep f |

165 (=]

166 ¢ angle pipelining loop (batches of mmi angles)

167 C

168 DO mo =1, mmo

169 mio = (mo—1J*mmi

170

171 ¢ K=inflows Ck=k0 houndary)

172 s

173 if (k2.1t.0 .or. kbc.oeq.0d then

174 domi =1, tmi

1753 do § =1, it J

176 do i =1, 1t

177 phikb(i,i.mi) = 0.0d+0

178 end do

1719 end do

180 end do

181 else

182 if (do_dsa) then

183 leak = 0.0

184 k = ko - k2

185 do mi =1, mmi

185 m=rmi + min

187 do =1, jt

138 do i =1, it

189 phikb{i,7,mi) = phikba(i,3.m)

190 Teak = leak

191 & + wisi (m)#phikb(i, j.mid#di (i)*di (3

192 faceli,j.k+k3,3) = face(i.j.k+k3,3)

1493 & + whtsi{md*phikb (i, 3,mid

194 end do

195 end do

196 end do

197] Teakage(5) = Teakage(s) + Teak -
(4] | 2
A I I | A
0.00 213 427 E.40 553

pat_report Tables in Cray Apprentice2 RIS

e Complementary performance data available in one place)

e Most reports easily accessible
e using drop-down menu for easy navigation

e Can easily generate new views of performance data

e Provides mechanism for more in depth explanation of data
presented

Example of pat_report Tables in Cray cRas
Apprentice2 .

Eile Help
v About Apprentice2 €| ¥ swim+pat+10302-0tap2 € |

e XY B EE

v Overview € ~Text ©

CrayPat/X: Version 5.2

02:52:12

Number of PEs (MPI ranks): 16

Numbers of PEs per Node: 16

New text
table icon

Numbers of Threads per PE: 1

Number of Cores per Socket: 12

Execution start time: Thu Apr 7 09:50:13 2011

System type and speed: x86_64 2000 MHz

Current path to data file: swim+pat+10302-0t.ap2

Right click h

Notes for table 1: for table
Table option: generatlon
- rofil .
Optgozs i;pfied by table option: ()[)tl()f]f; A‘/

-d ti%@0.95,ti,imb_ti,imb_ti%,tr -b gr,fu, pe=HIDE, th=HIDE

The Total value for Time, Calls is the sum for the Group values.
The Group value for Time, Calls is the sum for the Function values.
The Function value for Time, Calls is the avg for the PE values.
The PE value for Time, Calls is the max for the Thread values.
(To specify different aggregations, see: pat_help report options sl)

Thcd o 2l v cdlhc. i cdTV it TS eee cdle T2 mc0. . Lalialad

(<] A | [>]

A I | | A
0.00 4930 98.59 1 478971971 8
swim+pat+10302-0t.ap2 (1.373s) i 4

Generating New pat_report Tables

v Profile
1 Custom...

1Source
| Calltree
] Callers

¥ Show Motes
C1Show All PE's
| Show HWPC
¥ Use Thresholds

Select All

Select None
Panel Actions >

Fanel Help

Reduce ap2 file information SR

S \
\

e Sometimes the amount of data in ap2 file can be large
e Very long-running applications \
e Applications running on a large number of PEs

e The app2 command supports two options to help
e --limitand --1imit_per_pe
e Restrict the amount of data being read in from the ap2 file
e use K, M, and G abbreviations for kilo, mega, and giga
e —-1limit sets aglobal limit on data size.
e —-limit per pe sets |limit per PE
e --limit per_ pe generally preferable (not always, but generally)
e preserves full parallism in analysis

e Example: first 3M data items
e app2 --1limit 3M data_file name.ap2 &

COMPUTE | STORE | ANALYZE

Timeline views with Cray Apprentice?

Tracing .

e Show tracing results (Time Live View)

e Information broken out by communication type (read, write, barrier,
and so on)

e Only true function calls can be traced

e Functions that are inlined by the compiler or that have local scope in a
compilation unit cannot be traced

e Enabled with pat_build -g, -u, -T or -woptions

e Full trace (sequence of events) enabled by setting
Pat_RT_SUMMARY=0

COMPUTE | STORE | ANALYZE

Time Line View (Sweep3D)

File

W swim+iompi+1566td.ap2 W T+hw 1 +swp+io+mpi+48p.ap2 I

@ e ey

508 MW

0,000
PE #0
PE #1
PE #2

_U
m
3
fucd
o
£+

-
m
I*
n
[y
£+

W Overview l W Function l W Environment

0,462

w Trafic Report | w Text Report | w Mosaic | w Activity |

0,924 1.3% 1,848

2,310

4,158 4,620

Murite

Read MM Barrier

Beast M Send MMReceive

Housekeeping Reduce

scale = 137.7%

Al1ToAll

Comm

File

Other M Barrier IMParallel Region

@ Zoom In

Housekeeping

Q Zoom Out

€ Best Fit |

A

461

Time Line View (Zoom) R

User Functions, MPI

\& SHMEM Line

W swim+iompi+1566td.ap2 ¥ T+hw 1 +swp+io+mpi+48p.ap2 |

OPRYVUHIE ME :
W Overview I W Function ¥ Traffic Report |vText Feport | W hosaic |VActivity I W Counters Plot I W HYY Counters Overview |VID Rates |

3,564 3.508 3,552 3,895 3,739 3,783 3.526 3 3.914 3.958 4,001
BE 0 — R e, (m”“ “ — ek N
PE #1 ity L
PE “2 L 1]
PE 43 LLLLLL) — e m—1
PE 84 W e — "
PE 45 [e — "W .
PE #6 — . I/O Line
PE 47 — £5 n
PE ¥ o — St e— —n
PE 49 e St !
PE #10 e CEtE—— L
PE #11 — EEpp— "
FE #12 i — — "
PE #13 L P — b "
PE #14 i — e | - |
PE #15 g =1 x "
PE#1 i ' "
PE #17 p "5
PE #18 = = "w
PE “18 PRI R kY ll. {
PE #20 Sae— x L
PE #21 = i x "
PE #29 EEptp— b L
PE #23 S— "
PE 424 Py | U
PE #25 ¥y By "
PE #26 axe 55 "
PE_#27 1 s — v |~
¥ N 5]
Murite ™Read M Barrier Beast M Send MReceive Housekeeping Reduce AllToAl1 Conm File Other M Barrier IMParallel Region Housekeeping

scale = 1454 7% Q Zoom |n Q Zoom Out @ Best Fit |

A | | I A
0.00 1.15 2.30 3.45 461

Time Line View (Fine Grain Zoom) .o

File

w swimsiompi+1566td a2 ¥ T+hw 1 +swp+iosmpis48p.ap2 |

ey sEIE uE

m & .=

PE #46)
PE _#47) A

W Overview | W Function ¥ Traffic Report l W Text Report I W Mosaic I = Activity | W Counters Plot l = HW Counters Dverview | W |0 Rates |
3,586 3.986 3.987 3,487 3,588
i

3,688 3.988 ; 3,989 3.989 3,890 3.890
1 {

(_:J

=

Murite "Read M Barrier W Bcast MiSend MReceive

Housekeeping " Reduce |1 A11ToALL Comm File Other M@ Barrier IMParallel Region Housekeeping

scale = 152198.2%

Q Zoom [h Q Zoom Out Q Best Fit |

| I A

2.30 3.45 461

~ I

@)

Other Cray Apprentice2 Reports A

e Environment reports

e Provide %_eneral iInformation about the conditions under which
the data file currently being examined was created

e Traffic Report

e shows internal PE-to-PE traffic over time. T
e information is broken down by comm. type (read, write, barrier etc.)

e |/O Rates Report

e table listing quantitative information about program's 1/O usage.

e look for I/O activities that have low average rates and high data volumes;
e this may indicate that the file should be moved to a different file system.

e Hardware reports
e Avallable only if hardware counter information was captured

e Full description at: http://docs.cray.com/books/S-2376-
63/S-2376-63.pdf

COMPUTE | STORE | ANALYZE

http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf

®
\
cCcRAY |
[\

\

Compiler feedback and variable
scoping with
Reveal

\
=AY ||
Reveal 08

S \
\

e For an OpenMP port a developer has to understand the
scoping of the variables, i.e. whether variables are shared

or private.
e Reveal is Cray’s next-generation integrated performance

analysis and code optimization tool.

e Source code navigation using whole program analysis (data provided
by the Cray compilation environment.)

e Coupling with performance data collected during execution by
CrayPAT. Understand which high level serial loops could benefit from

parallelism.

e Enhanced loop mark listing functionality.

e Dependency information for targeted loops

e Assist users optimize code by providing
variable scoping feedback and suggested
compile directives.

Input to Reveal SOON

e Recompile to generate program library
e Performance data from a separate loop timing trace experiment \
e Launch Reveal

$> module load perftools

$> ftn -03 -hpl=my program.pl -c my_program_filel.f90
$> ftn -03 -hpl=my program.pl -c my_program_filel.f90
$> reveal my_program.pl my_program.ap2 &

y

e You can omit the *.ap2 and inspect only compiler feedback.

e Note that the profile generate option disables most automatic
compiler optimizations, which is why Cray recommends generating this
data separately from generating the program_library file.

COMPUTE | STORE | ANALYZE

\
. . : . CCRANY ||
Visualize CCE’s Loopmark with Performance Profile RO,
) \ \
Eile Help Performance Loopmark and optimization |
w vhone.aid) feedback annotations \

T e el
ol M/parabola.foo
3 parabola.f20 E
= 3352% PARABOLA . e
Loop @24 1887500 Vrd do n = nmin-2, nmax+l
Loop@30 diffai(n) = aln+l) - ain) I
Loop@36 26 enddo
Loop@44 27
Loop@s3 28 ! Equation 1.7
Loop@67 29 ! da(j) = DL * (a(j+1) - a(j)) + D2 * (a(j) - a(j-1))
Loop@ys 1687500 Yrd 30 don = nmin-1, nmax+l
Loop@s4 3l da(n) = para(n,4) * diffa(n) + para(n,5) * diffa(n-1)
X b 1?-;3: F_"“*R‘“‘SE;D 32 da(n) = sign(min(abs(da(n)), 2.0%abs(diffa(n-1)), 2.0%abs(diffa(r
. riemann.
[+ 11.21% remap.fa0 23 enddo
E g;;: I:::rlzer:ffgn 35 ! zero out dain) 1f ain) 1s a Llocal max/min
- S 349, eyolve 190 1687500,V rd 36 do n = nmin-1, nmax+l
- 5 34% EVOLVE I- 37 if{diffain-1i*diffain) = 0.0) dain) = 0.0 E
Loop@2>
Loop @36 -Info - Line 24. . .
Loop @58 O Aloop start!ng at I!ne 24 was unrullgd 4 times.
Loop@70 O A loop starting atline 24 was vectorized.
ppmlrfa0 — .
e 44 e &) Compiler feedback

vhone. aid loaded. vhone. ap2 loaded.

Visualize CCE’s Loopmark with Performance

Profile (2)

FolelNe!

N Explain

g Q g [2] I | n I iOPT_INFO: A loop starting at line %s was unrolled.

Eile

< [Full List 3] &

PRITIE Y
[prin.fa0
remap.fa0
riemann.fa0
states f20
sweepx] 20
= SWEEFPX1
Loop@z2a
Loop@2a
Loop@s3
P osweep:2.f20
P osweepy.fan

q = = = = =

Info - Line 32
O & loop starting at line 32 w

[A loop starting at line 32 w

w About Reveal ﬂ| ¥ vhone.aid g|

&

sweepx]. A0

31 | Putstate variables into 10 array,
doi=1.imax
33 n=i+6

34 r(ny = zrofij.k
35 p ny=2zpriij.K
36 uoin) = zuxiip.k)
37 Vo) = zuyii.p.k)
38 Woin = zuz(i.j.k)
38 f (ny= Lk
40

41 ¥ali(n) = zaii)
42 A0y = zdx(i)
43 ¥a (n) = zali
44 d (n) = zdxii)
45 po(n) = max

T*gammi+0 S*u

Integrated

message update using PPML

‘explain support’

Liamem imdn mmemel e e Fme maarm s

The compiler unrolled the loop. Unrolling creates a number of copies of the
loop body. When unrolling an outer loop. the compiler attempts to fuse
replicated inner loops - a transformation known as unroll-and-jam. The
compiler will always employ the unroll-and-jam mode when unrolling an outer
loop: literal outer loop unrolling may occur when unrolling to satisify a

user directive (pragma).

This message indicates that unroll-and-jam was performed with respect to the
identifed loop. A different message is issued when literal outer loop

unrolling is performed, as this transfomation is far less likely to be

beneficial.

For sake of illustration, the following contrasts unroll-and-jam with literal
outer loop unrolling.

#434 "Iptmp/pdgesipdges ths 81/bld dibuild 64 ndb/pdgesipdges_ftn.msg.c"

DO J=1,10
DO 1=1.100
A(LJ) = B(LJ) + 420
ENDDO

ENDDO

DoJ=1,1032
Dol=1,100

AL y=B(. J)+ 420 lunroll-and-jam
AlLJ+11=B(l.J+1) + 420

ENDDO
EMDDO
DO J=1.102
Dol=1,100
ALy =BilLJ) + 420 !iteral outer unroll
ENDDO
Do1=1.,100
AlLJ+1) = BilLJ+1) + 420
ENDDO
ENDDO

The literal outer unroll code performs the same sequence of memory operations
as the original nest, while the unroll-and-jam transformation interleaves
operations from outer loop iterations. The compiler employs literal

outerloop unrolling only when the data dependencies in the loop. or a control
flow impediment. prevent fusion of the replicated inner loops. Literal outer

loop unrolling is generally not desirable. Itis provided to ensure expected
behavior and for those rare instances where the user has determined that it

is beneficial

§
CRAaY |

Explain other message. l [

3€ Close

I LT T B A

vhone. aid loaded

COMPUTE |

STORE |

ANALYZE

\
: . . cRAawyY ||
View Pseudo Code for Inlined Functions .
L)
e 0 C
Eile Help
v AboutReveai € | v vhone.aid © |
« | Full List =]#} ES init 90
) G NUyoLe = u
vhimods.o [~} 8l ncycp =0
zonemod.o B2 ncycd =0
B boundary.f20 83 ncyecm = 0
b dtcon.f30 84 nfile = 1000 Expand to
b dump.120 85 see pseudo
b evalve 150 B& ! Set up grid coordinates code
B flatten fa0
a7
[forcesfa0 —r ; . l
) a2 call grid(imax,xmin,xmax, Zxa,zxc, Zdx)
[images.fa0 -
88 1326 = 100
= init.fa0
b GRID 28 t$27 = 100
b INIT Inlined call 55 I e
b parabola 90 sites marked 88 ldirg ivdep
L b e e SO 28 do
Info - Line 88 88 zxa(l + $I_L88 100) = 9.9999998e-3 * $I_L88 |
O A divide was turned into a multiply by a recipro 28 zdx(l + $I LB8 100) = 9,9999998:-3
O A loop starting at line B8 was unrolled 4 times. 88 zxc(l + $I LBS 100) = 4,9995998%-3 + (9, 999
O A loop starting at line B8 was vectorized. 28 $I L88 100 = 1 + $I L88 100
O The call to grid was textually inlined. B8 if ($I_L88 100 >= 100) exit
88 enddo
1] B9 call grid({jmax,ymin,ymax,zya,zyc,zdy)
(1] 80 call grid(kmax,zmin,zmax,zza,zzc, zdz) ©

vhone. aid loaded

B
L'y

COMPUTE | STORE | ANALYZE

L J

\
: : : , AN
Scoping Assistance — Review Scoping Results RS St

Parallelization inhibitor
messages are provided to
assist user with analysis u

Eile Help
w vhone.aid € |

~Navigation | &
- |Fu|l List > |-3}

epx2 fa0: lines 28 -= 69

Scope

~Sowurce - home/usersheidi/demolLM/sweepy.fo0-

Array FAILAL ast defining iteration not known for variable that is live on exit.:W

¥ LILCRTT

subroutine sweepy

flat Array FAILAL ast defining iteration not known for variable that is live on exit. . W
_ 2 q Array Last defining iteration not known forvariable that is live on exit. -
v EWEI;;;_ 3 | This subroutine :y 22::[2::[::
oo
. 4 1 After call to ks Scalar Shared
LDUFI@33 5 1 If unl]r 1wo d ngeomx Scalar Shared
Loop@37 . ; nlef Scalar Shared
Loop@38 Loops with 6 ! After hydro Ul ey scaar shared User addresses
Loop@49 scoping ISR e e parallelization
Loop@63 information are i de Aray Shared issues for
Loop@77 highlighted — red Bl | GLOBALS A Ay shared unresolved
- sweep:2 190 needs user use global S variables
= SWEEPHZ aSS|Stance Luse zZone UK Array Shared
Loop@28 LUSe Sweeps auy Amay Shared
LUUD@EQ use |T|F|l uz Array Shared
T
Loop@32 i
-First/Last Private -Reduction
LUUD@BB IMPLICIT MOMNE [Enable First Private | i = |
Loop@4d | _I:| Enable Last Private ' '
Loop@=8 o
b sweepx1 190 ~info searcn: | |
b valume fa0 l Insert Directive l l Show Directive l l 3¢ Close l
b states 180
f riemann.f30 & [

loading /homefusers/heidi/demolLivhone. aidivhone 22T

®

\
: : cRAY
Scoping Assistance — User Resolves Issues RO,

< el \
OpenhP Tips \
* Reduction in an inlined function
P Scoping conflict with inlined variable T T
= Scoping conflict with locally visible array iame 7l Type Scope Info
An a"ay requires conﬂicting SCUPEE at different locations. fs“eepxz_fgu— f Array FAILLast defining iteration not known for variable thatis live on exit. W
It may he pﬂssible to declare and use a different array for the pri\fate flat Array FAILALast defining iteration not known for variable thatis live on exit. W
q Array FAIL-Last defining iteration not known for variable that is live on exit. W
array’ Uses. LUDP over each row..
isy Scalar Shared
is Scalar Shared
ks Scalar Shared
x glos? = 1 s]'5 ngeomx Scalar Shared
nlefb Scalar Shared
npey Scalar Shared
.) ight« Scalar Shared
Loop@37 31 | Put state variables 1o oo
Lﬂﬂp@3 zdx Array Shared
LDDp 32 dz m . - 1 ! npe"" bl Array Shared
31250 33 o01=1, 1s or Array Shared
Lo)) y Zo Amay Shared =
125333 34 n=1+ lE]f* {m'l} + UK Array Shared O A ab O
_ . uy Array Shared a a
N Ao eg 35 r{n} - -{llk‘l‘ uz Array Shared
36 pin) = recv2(2,k,1,] 0 ence 00p
Ope . . rFirst/Last Private
D Ja 0 D 3? u {n } = - {3‘ k s 1, [Enable First Private o 5
S - 38 vin) = -{.I'.].J k,1, 7 |0 Enabie Last Prvate) |
39 win} = -{5;}(; i; Search'l]
LUUD@33 4ﬂ f {n } = - {5‘ k . 1 . Insert Directive Show Directive x Close \
Loopi@d44 41 enddo
LDGp@EB] oLl
~info - Line 28
[sweepx] 120 - " .
B A loop starting at line 28 was notvectorized because it contains a call to subroutine "ppmir' on line 55. [~]
[volume f20
b ates 60 Loop has been flattened.
Slates.
i Loop has been flattened.
p riemann.fa0 '
)| | 2]
loading /homefusers/heidi/demolLivhone. aidivhone 22T

e
< 8%
Eile Hel
= =EP Reveal generates
¥ vhone.aid © | example OpenMP
~Navigation directive
o (Ahup| | $oown| | e
4 [Full List >]i}
I-Snlrrce - home/users olLM/'sweepx1.7f90
800 XIC D — =l
ISOMP parallel do default(none) & 28 do k =1, ks XIC
I$OMP& shared (gamm,send1,zdx,zfl,zpr.zro.zux, zuy,zuz, zxa) g] . sweepx1.120; lines 29 -= 63
|!$OMP& lastprivate (dx, dx0,e.fp.ruyw, xa,xa0) 29 do] = 1,] -
nfo
30 [sF8 Array Privas LastPrivate of array may be very expensive.
31 ! Put stat dx0 Array Private LastPrivate of array may be very expensive.
-0V rZ 32 do 1 =1,1 = Array Private LastPrivate of array may be very expensive.
13 n o= 1 + f :rray Eriva:e stiriva:e 0: array may ie very expensive.
B rray rivate rivate of array may be very expensive.
34 I {n} =| r Private WARN- . ‘ivate of array may be very expensive.
Copy Directive l l 3¢ Close l 35 P (n) = u Private WARN-La e of array may be very expensive.
£ 36 uofn) 4 v Array Private WARN:-LastP of array may be very expensive.
sSweepdd =50 37 v (n) & w Array Private WARNEL astPriva Jrray may be very expensive.
- SWEEPXQ 38 w {n} = . - [y [y P M U Ao |)]
Loop@28 39 f (n) < First/Last Private -F. o
Loop@23 40 [Tl Enable First Private | Nond A
Loop@32 | Enable Last Private
41 xalln) =
Loop@33 d
Loop@44 42 el | oo AN l
A2 - i —
Loop@s8 o o
. Insert Directive Show Directive x Close ‘
- sweepx] 20 -Info - Line 29 Y
- SWEEP1 B A loop starting at line 29 was notvectorized b
Loop@28 Loop has been flattened.
DR | oo has beenflatened
| nonm3? |
loading /home/users/heidi/demoliMMvhone. aid/ivhone_22.T. .

\
CcC=RAY |
[\

Optimisations for MPI

Rank Reordering .

e Sometimes an MPI application is not well balanced

Load Balance: mpi_waitall_
Calls Time (in secs)

aaaaa

EEEEE
ﬁﬁﬁﬁﬁ
zzzzz
aaaaa

KKKKK

KKKKK

zzzzz

wwwww

uuuuu
EEEEE
zzzzz

EEEEE
77777

zzzzz

ooooo
sssss

lllll
wwwww

1111111

Fzsnszlmhy:nmsas:.apz (605,339 events in 23.985s)]

e The MPI library can reorder the ranks at runtime based on
the setting of MPICH_RANK_REORDER_METHOD

Rank Placement
e Start with a list of nodes to run on

e 0: Round-robin placement

e Sequential ranks are allocated one per node in sequence

e Placement starts again on first node if we reach the last node
e 1: SMP-style placement (default)

e Sequential ranks fill up each node in turn

e Only then move on to the next node
e 2: Folded rank placement

e Similar to round-robin placement

e except each pass over node list is in the opposite direction
e 3: Custom ordering

e The location of each rank in turn is specified in a list

e Examples of these are shown on the next slide
e For a simplified example of four cores per node

COMPUTE | STORE | ANALYZE

0: Round Robin Placement

1: SMP Placement (default)

2. Folded Placement

3: Custom Example

MPICH_RANK ORDER: 0,1,4,5,2,3,6,7,8,9,12,13,10,11,14,15

e MPICH_RANK_REORDER=3 enables this

e Ordering comes from file MPICH_RANK_ORDER

e comma separated ordered list
e can optionally be condensed into hyphenated ranges
e all ranks should be included in the list once and only once
e Nodes are filled up SMP-style
e but not with sequential rank numbers
e Instead, take ranks sequentially from the MPICH_RANK_ORDER list

MPICH RANK ORDER: 0,1,4,5,2,3,6-9,12,13,10,11,14,15

Rank placement with CrayPat A

MPI grid detection:

There appears to be point-to-point MPI communication in a 20 X 16
grid pattern. The 27.5% of the total execution time spent in MPI
functions might be reduced with a rank order that maximizes
communication between ranks on the same node. The effect of several
rank orders is estimated below.

A file named MPICH_RANK_ORDER.Grid was generated along with this
report and contains usage instructions and the Custom rank order
from the following table.

Rank On-Node On-Node MPICH_RANK_REORDER_METHOD
Order Bytes/PE Bytes/PE%
of Total
Bytes/PE
Custom 8.092e+09 75.00% 3
SMP 4.580e+09 42.45% 1 _ _ _
Fold 2.290e+08 2.12% 2 When testing this the time went only
RoundRobin ©.000e+00 0.00% © down to 348 from 360 seconds, but

approach might become important
when scaling higher

72

Further information from CrayPat

Metric-Based Rank Order:

When the use of a shared resource like memory bandwidth is
unbalanced across nodes, total execution time may be reduced
with a rank order that improves the balance. The metric used
here for resource usage is: USER Time

For each node, the metric values for the ranks on that node
are summed. The maximum and average value of those sums are
shown below for both the current rank order and a Custom rank
order that seeks to reduce the maximum value.

A file named MPICH_RANK_ORDER.USER_Time was generated
along with this report and contains usage instructions and the
Custom rank order from the following table.

Rank Maximum Average Max:Ave Reduction in Max
Order Value Value Ratio
Custom 3.491e+03 3.393e+03 1.03 8.77%

Current 3.827e+03 3.393e+03 1.13

Rank reordering

e Easy to experiment with
e defaults at least should be tested with every application...
e CrayPat can help generate the reorder file

e When might rank reordering be useful?

e If point-to-point communication consumes a significant fraction of
program time and a load imbalance detected

e e.g. for nearest-neighbour exchanges (see next slide)
e Also shown to help for collectives (alltoall) on subcommunicators
e Spread out I/O servers across nodes

e If there is a good use case for exploiting the Intel hyperthreads

e Have used this for I/O servers (NEMO) and
radiation colocation (IFS)

COMPUTE | STORE | ANALYZE

