Programming Environment

Vision .

e Cray sKstems are designed to be High Productivity as well
as High Performance Computers

e The Cray Programming Environment (PE) provides a
simple consistent interface to users and developers.
e Focus on improving scalability and reducing complexity

e The default Programming Environment provides:
e the highest levels of application performance
e arich variety of commonly used tools and libraries
e a consistent interface to multiple compilers and libraries
e an increased automation of routine tasks

e Cray continues to develop and refine the PE
e Frequent communication and feedback to/from users
e Strong collaborations with third-party developers

COMPUTE | STORE | ANALYZE

i
CcCRANY
Cray Software Ecosystem A
° \
\
APPL
GF)LsTC Ca Moy
b L s Trersiagy Com
=ﬁA"“l""
s &accelrys’ Cmaﬂm
E ntel ’ q‘\The MathWorks

Technnlnglmi L \

sm-ru:.m ‘El ‘
.0
g I : o, &Altair “;
§ slines Cray Linux Y }
' B
3 I Environment =ou '3
= BtV vy Sadapti /S
- - C‘II'.“ETIM-G- m
CrayPAT Cray lterative) ~$’

TS Cray PETS0, CASK 4

| e R | ’ P
S Q% g lustre DVS -~
QPOQMA ParaTools nNag IMSL e
NCE TOULS - —0 g \\P

Cray’s Supported Programming Environment

Programming

Languages

Programming
models

Compilers

Tools

STAT

Performance Analysis

«CrayPat

* Cray

Optimized Scientific

Libraries

®
§
CcCRAY

[N
S \

I/O Libraries

Cray Trilinos
(with CASK)

-
Distributed Environment setup
= Memory Cray Compiling LAPACK NetCDF
ortran \
(Cray MPT) Environment Modules
L « MPI (CCE) ScaLAPACK
; * SHMEM
BLAS (libgoto)
C Allinea (DDT)
L Shared Memory
(Refinement
* OpenACC .
Compilers
PGAS & Global . Intel Debugging Support
L :
View Composer Tools FFTW
(« UPC (CCE) - BEl
Python « CAF (CCE) *Abnormal Cray PETSc
« Chapel Termination (with CASK)
Processing []

Apprentice?

Cray developed

Licensed ISV SW

3d party packaging

Cray added value to 3" party

Scoping Analysis

The Cray Compilation Environment (CCE) SOON

e The default compiler on XE and XC systems
e Specifically designed for HPC applications

e Takes advantage of Cray’s experience with automatic vectorization and \
and shared memory parallelization

e Excellent standards support for multiple languages and
programming models

Fortran 2008 standards compliant

C++98/2003 compliant (working on C++11)

OpenMP 3.1 compliant, working on OpenMP 4.0

OpenACC 2.0 compliant

e Full integrated and optimised support for PGAS languages
e UPC 1.2 and Fortran 2008 coarray support
e NoO preprocessor involved
e Full debugger support (With Allinea DDT)

e OpenMP and automatic multithreading fully integrated
e Share the same runtime and resource pool

e Aggressive loop restructuring and scalar optimization done in the
presence of OpenMP

e Consistent interface for managing OpenMP and automatic multithreading

COMPUTE | STORE | ANALYZE

Cray MPI & SHMEM

e Cray MPI

e Implementation based on MPICH3 source from ANL
e Includes many improved algorithms and tweaks for Cray hardware

e Improved algorithms for many collectives

e Asynchronous progress engine allows overlap of computation and comms
e Customizable collective buffering when using MPI-10
o

Optimized Remote Memory Access (one-sided) fully supported including
passive RMA

e Full MPI-3 support with the exception of

e Dynamic process management (eg. MPI_Comm_spawn)

e MPI_LONG_DOUBLE and MPI_C_LONG_DOUBLE_COMPLEX for CCE
e Includes support for Fortran 2008 bindings (from CCE 8.3.3)

e Cray SHMEM
e Fully optimized Cray SHMEM library supported
e Fully compliant with OpenSHMEM v1.0

e Cray XC implementation close to the T3E model
COMPUTE | STORE | ANALYZE

Cray Scientific Libraries

FFT Dense Sparse

BLAS

CASK
LAPACK

ScaLAPACK

IRT

CASE Trilinos

IRT — Iterative Refinement Toolkit
CASK - Cray Adaptive Sparse Kernels
CASE - Cray Adaptive Simplified Eigensolver

COMPUTE | STORE | ANALYZE

Cray Performance Analysis Tools (PAT) .

e From performance measurement to performance analysis

e Assist the user with application performance analysis and
optimization
e Help user identify important and meaningful information from
potentially massive data sets
e Help user identify problem areas instead of just reporting data
e Bring optimization knowledge to a wider set of users

e Focus on ease of use and intuitive user interfaces
e Automatic program instrumentation
e Automatic analysis

e Target scalability issues in all areas of tool development

COMPUTE | STORE | ANALYZE

Debuggers on Cray Systems V08

e Systems with hundreds of thousands of threads of »
execution need a new debugging paradigm

e Innovative techniques for productivity and scalability
e Scalable Solutions based on MRNet from University of Wisconsin
e STAT - Stack Trace Analysis Tool
e Scalable generation of a single, merged, stack backtrace tree
e running at 216K back-end processes
e ATP - Abnormal Termination Processing

e Scalable analysis of a sick application, delivering a STAT tree and a minimal,
comprehensive, core file set.

e Fast Track Debugging
e Debugging optimized applications
e Added to Allinea's DDT 2.6 (June 2010)

e Comparative debugging
e A data-centric paradigm instead of the traditional control-centric paradigm
e Collaboration with Monash University and University of Wisconsin for scalability
e Support for traditional debugging mechanism
e TotalView, DDT, and gdb

COMPUTE | STORE | ANALYZE

Controlling the environment with
modules

Modules KON

e The Cray Programming Environment uses the GNU .
“modules” framework to support multiple software
versions and to create integrated software packages

e As new versions of the supported software and
associated man pages become available, they are
Installed and added to the Programming Environment as a
new version, while earlier versions are retained to support
legacy applications

e System administrators will set the default version of an
application, or you can choose another version by using
modules system commands

e Users can create their own modules, or administrators can
Install site specific modules available to many users

Viewing the current module state CooN

e Each login session has its own module state which can be |
modified by loading, swapping or unloading the available
modules

e This state affects the functioning of the compiler wrappers
and in some cases runtime of applications

e A standard, default set of modules is always loaded at
login for all users

e Current state can be viewed by running:
$> module list

Default modules example

ccb-login2:craypr$ module list
Currently Loaded Modulefiles:

1)

modules/3.2.6.7
eswrap/1.1.0-1.020200.1130.0
switch/1.0-1.0502.50885.3.4.ari
craype-network-aries

craype/2.1.1

cce/8.2.7

cray-libsci/12.2.0
udreg/2.3.2-1.0502.8413.2.9.ari
ugni/5.0-1.0502.8670.4.22.ari
pmi/5.0.3-1.0000.9981.128.2.ari
dmapp/7.0.1-1.0502.8638.9.93.ari
gni-headers/3.0-1.0502.8554.6.6.ari
xpmem/0.1-2.0502.50559.4.2.ari
job/1.5.5-0.1 _2.0502.49000.2.39.ari
csa/3.0.0-1_2.0502.49605.4.45.ari
dvs/2.4 0.9.0-1.0502.1696.2.39.ari
alps/5.2.0-2.0502.8594.12.4.ari
rca/1.0.0-2.0502.49765.5.41.ari
atp/1.7.2

PrgEnv-cray/5.2.14
pbs/12.2.401.141761
craype-ivybridge

cray-mpich/6.3.1

Viewing available modules .o

e There may be many hundreds of possible modules
available to users

e Beyond the pre-loaded defaults there are many additional packages
provided by Cray

e Sites may choose to install their own versions
e Users can see all the modules that can be loaded using

the command:
e module avail

e Searches can be narrowed by passing the first few
characters of the desired module, e.q.

ccb-login2:craypr$ module avail gcc

------------------------------- /opt/modulefiles ----------c-ccccmmmmmeeaaa
gcc/4.8.0 gcc/4.8.2(default) gcc/4.9.2 gcc/5.1.0
gcc/4.8.1 gcc/4.9.0 gcc/4.9.3

Further refining available modules .o

e avail [avail-options] [path...]
e List all available modulefiles in the current MODULEPATH

e Useful options for filtering

e -U, --usermodules
e List all modulefiles of interest to a typical user

e -D, --defaultversions
e List only default versions of modulefiles with multiple available versions

e -P, --prgenvmodules
e List all PrgEnv modulefiles

e -T, --toolmodules
e List all tool modulefiles

e -L, --librarymodules
e List all library modulefiles

e % module avail <product>
e List all <product> versions available

COMPUTE | STORE | ANALYZE

module commands and standard output RIS

e Be aware that module commands output to standard error
e This makes it tricky to search the (voluminous) module

avail output
e csh/tcsh

module avail >& mavalil.txt ; grep netcdf mavail.txt
(module avail >/dev/null) |& grep netcdf

e ksh

module avail 2> mavalil.txt ; grep netcdf mavail.txt
module avail 2>&1 | grep netcdf

Modifying the default environment .

e Loading, swapping or unloading modules:

e The default version of any inidividual module can be loaded by name
e €.0.. module load perftools-base/6.3.0

e A specific version can be specified after the forward slash
e €.0.. module load perftools/6.1.0

e Modules can be swapped out in place
e €.0.. module swap intel intel/15.0.1.133

e Or removed entirely
e €.g.. module unload perftools

e Modules will automatically change values of variables like
PATH, MANPATH, LM_LICENSE_FILE... etc

e Modules also provide a simple mechanism for updating certain
environment variables, such as PATH, MANPATH, and
LD LIBRARY_ PATH

e In general, you should make use of the modules system rather than
embedding specific directory paths into your startup files, makefiles,
and-scripts

COMPUTE | STORE | ANALYZE

\
: CcCR=RANY |
Tips for modules

e Put module list in job scripts

e This gives you a record of job context weeks or years
later

e If you want to test for the programming environment
e Test the PE_ENV environment variable
(but there are no guarantees this won‘t change on eday)

e Use the module information to find documentation
e % module load intel
e % module show intel
(look at output for interesting envars)
e % 1s $INTEL PATH

bin/ Documentation/ ipp/ mpirt/ tbb/
uninstall.sh*

compiler/ eclipse support/ man/ pkg bin@ wuninstall/

debugger/ foldermap.sc.xml mkl/ Samples/
uninstall GUI.sh*

COMPUTE | STORE | ANALYZE

Summary of useful module commands

e Which modules are available?
e module avail, module avail cce

e Which modules are currently loaded?
e module list

e | oad software
e module load perftools

e Change programming environment
e module swap PrgEnv-cray PrgEnv-gnu

e Change software version
e module swap cce/8.3.4 cce/8.3.7

e Unload module
e module unload cce

e Display module release notes
e module help cce

e Show summary of module environment changes
e module show cce

COMPUTE | STORE | ANALYZE

Compiling Applications for Cray XC

Compiler driver wrappers SOON

e All applications that will run in parallel on the Cray XC .
should be compiled with the standard language wrappers

e The compiler drivers for each language are:
e cC - wrapper around the C compiler
e CC - wrapper around the C++ compiler

e ftn - wrapper around the Fortran compiler

e These scripts will choose the required compiler version,
target architecture options, scientific libraries and their
Include files automatically from the module environment.

e Use them exactly like you would the original compiler, e.g.
To compile progl.f90 run

ftn -c progl.f90

COMPUTE | STORE | ANALYZE

Compiler driver wrappers SOON

e The scripts choose which compiler to use from the PrgEnv |
module loaded

PrgEnv-cray Cray Compilation Environment crayftn, craycc, crayCC

PrgEnv-intel Intel Composer Suite ifort, icc, icpc
PrgEnv-gnu GNU Compiler Collection gfortran, gcc, g++
PrgEnv-pgi Portland Group Compilers pgf90, pgcc, pgCC

e Use module swap to change PrgEnv, e.g.
e module swap PrgEnv-cray PrgEnv-intel

e PrgEnv-cray Is loaded by default at login
e This may differ on other Cray systems
e use module list to check what is currently loaded

e The Cray MPI module is loaded by default (cray-mpich)

e To support SHMEM load the cray-shmem module
e To compile a pure SHMEM code, unload the cray-mpich module

Compiler versions CooN

e There are usually multiple versions of each compiler .
available to users.

e The most recent version is usually the default and will be loaded when
swapping PrgEnvs.

e To change the version of the compiler in use, swap the Compiler
Module. e.g. module swap cce/8.3.4 cce/8.3.7

Compiler Module

PrgEnv-cray cce
PrgEnv-intel intel
PrgEnv-gnu gcc

About the -I, -L and -1 flags SOON

e For libraries and include files covered by module files, you |
should not add anything to your Makefile

e No additional MPI flags are needed (included by wrappers)

e You do not need to add any -I, -1 or -L flags for the Cray provided
libraries

e If your Makefile needs an input for -L to work correctly, try
using ‘.’

e If you really need a specific path, try checking ‘module
show X’ for some environment variables

COMPUTE | STORE | ANALYZE

OpenMP SO0

e OpenMP is supported by all of the PrgEnvs

e CCE (PrgEnv-cray) recognizes and interprets OpenMP directives by
default. If you have OpenMP directives in your application but do not
wish to use them, disable OpenMP recognition with —hnoomp.

Enable OpenMP | Disable OpenMP

PrgEnv-cray (-homp) -hnoomp

PrgEnv-intel -openmp
PrgEnv-gnu -fopenmp

Compiler man pages

e For more information on individual compilers

PrgEnv-cray man craycc man crayCC man crayftn

PrgEnv-intel man icc man icpc man ifort

PrgEnv-gnu man gcc man g++ man gfortran
Wrappers man cc man CC man ftn

e To verify that you are using the correct version of a
compiler, use:
e -V option on a cc, CC, or ftn command with PGI, Intel and Cray
e -dumpversion option on a cc, CC, or ftn command with GNU

