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o7 Why studying the Planetary Boundary Layer ?
\ 4
¥~ Natural environment for human activities

‘¥~ Understanding and predicting its structure
X Agriculture, aeronautics, telecommunications, Earth energetic budget

“F”Weather forecast, pollutants dispersion, climate prediction




 a@ Qutline
-y

T~ Definition

¥ Turbulence

& Stability

¥ Classification

“F” Clear convective boundary layers

¥~ Cloudy boundary layers (stratocumulus and cumulus)

¥~ Summary
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PBL: Definitions

 aa)
\ 4

The PBL is the layer close to the surface within which vertical transports by turbulence
play dominant roles in the momentum, heat and moisture budgets.

" The layer where the flow is
turbulent.

%~ The fluxes of momentum, heat Free troposphere

or matter are carried by 1-3kn™

turbulent motions on a scale of
the order of the depth of the
boundary layer or less. C

Mixed layer

" The surface effects (friction, 50 m -
cooling, heating or moistening)
are felt on times scales < 1
day.

surface layer

Composition

® atmospheric gases (N,, O,, water vapor, ...)
® aerosol particles

® clouds (condensed water)
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P e PBL: Turbulence
-y -

&~ Characteristics of the flow

X Rapid variation in time
X [rregularity Chaotic flow
X Randomness

¥~ Properties

X Diffusive
X Dissipative
X Irregular (butterfly effect)

" Origin:

X Hydrodynamic instability (wind shear)

X Thermal instability
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/ a@- PBL: Governing equations for the mean state

(&= das law (equation of state)

& momentum (Navier Stokes)

a continuity eq. (conservation of mass)

(&= heat (first principle of thermodynamics)

(= total water

Reynolds averaging A= A+ A
Averaging (overbar) is over grid box, i.e. sub-grid turbulent motion is averaged out.

Simplifications

Boussinesq approximation (density fluctuations non-negligible only in buoyancy terms)
Hydrostatic approximation (balance of pressure gradient and gravity forces)

Incompressibility approximation (changes in density are negligible)
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/ a@- PBL: Governing equations for the mean state

v
Reynolds averaging A= A+ A’
&= 98s law p=0p Rd@ T, =T@+0.61q, —q,)

virtual temperature

7129



L0 PBL: Governing equations for the mean state

ey
Reynolds averaging A= A+ A’

Need to be
&= 9as law p =P Rd@ 'FV —T(@1+0.61q, —q,) parameterized !
virtual temperature 2"d order
— ou, — 10P  vd°y,
(&= momentum + [_JlJ ——— 5|39 + fc8u3 U —— + 2|
ax p OX. OX;
mean gravity Coriolis  Pressure Viscous Turbulent
advection gradient  stress transport
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L0 PBL: Governing equations for the mean state

\ 4

Reynolds averaging A= A+ A
&= 9as law p=0p Rd@ T, =T@+0.61q, —q,)
virtual temperature 2" order
— ou, — 10P  wvd’y,
(&= momentum +U,—+=-06,0+ feg,u ———_—+ 5
OX. P pox, ox,
j i j
mean gravity Coriolis  Pressure Viscous Turbulent
advection gradient  stress transport

(g continuity eq. %=O
OXij
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el PBL: Governing equations for the mean state
Reynolds averaging A= A+ A
i gas law 1_3 = F_) Rd@ 'F\,zT(1+O.61qv—q,)
virtual temperature 2" order
—ou, — 10P vd’y,
momentum +u —-=-96.9+fe . u—— + '
@ J@XJ— |3g c™ij3 ] paxi 6Xj2
mean gravity Coriolis Pres_sure Viscous Turbulent
advection gradient  stress transport
¢z ocontinuity eq. %=O
OXi
7  — 986 1 8F, o&ue’ LE
heat +U; = —— = T
= T ox PC, OX, OX ; £,
mean I turbulent Latent heat
advection transport release
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@ PBL
L

- Governing equations for the mean state
Reynolds averaging A= A+ A

&= 9as law p=0p Rd@ T, =T@+0.61q, —q,)
virtual temperature 2" order
—ou, — 106P vd%y,
(&= momentum +U,—+=-06,0+ feg,u ———_—+ 5
axj P aXi an
mean ravity Coriolis Pressure Viscous Turbulent
advection gradient  stress transport
¢z ocontinuity eq. ou, _0
OXj
heat i AN - T e
& b &x PC, OX, &%, oC,
mean radiation turbulent Latent heat
advection transport release
a. — &a. S ou’ qy
&= total water oa. + U, OA. _ Za _ 19:
ot T Ox P O |
mean

precipitation  turbulent

advection transport



/ a@- PBL: Turbulent kinetic energy eguation

e
buoyancy mechanical turbulent pressure dissipation
production shear transport transport

0 = 0 n _ virtual potential
v (1 0.61 qV ql) temperature
(&= Anexample : 1

X9,/ <0,w<0 or 6,0 ,W>0 —» we,/>0 sourcel @

X9/ <0,w>0o0or 6/,>0,Ww<0—— wWo,/<0 sinkl T
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P e PBL: Stability (1)

¥~ Traditionally stability is defined using the temperature gradient

. _ ,  Stable . unstable
"9, gradient (local definition): Z z

80, 0
X 5 =Y stable layer

26,
X — <0 unstable layer

26, _
X "3z = " neutral layer R X

0, ov

“¥” How to determine the stability of the PBL taken as a whole ?

X In a mixed layer the gradient of temperature is practically zero

X Either 8, orw’ 0,’ profiles are needed to determine the PBL stability state
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(Stull, 1988)2¢ [ o
Stable

PBL: Stability (11)

Sta‘blo

A St

Stable

Stable

Neutral

Unstable

o

Unstable Unstable
0, 6y
3 z y
a Z4 ~
Unknown Unknown ,
Stan .

¥ oo Yot

Oy Oy
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/ a@- PBL: Other ways to determine stability (111)
-y

Bouyancy flux at the surface:

" af unstable PBL
W HV >0 (convective)
w'é; <0 stable PBL
( (4 4
wég,=0 neutral PBL

< Or dynamic production of

TKE integrated over the
PBL depth stronger than
thermal production

Monin-Obukhov length:
—0,u’
kg(w'&,)

L

u? = (u'w),

-10°m <L <-100m unstable PBL

-100m <L <0 strongly unstable PBL
O<L<10 strongly stable PBL
10m <L <10°m stable PBL

IL| > 10°m neutral PBL
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/ a@- PBL: Classification and scaling
-y

¥ Neutral PBL :
X turbulence scale | ~ 0.07 H, H being the PBL depth
X Quasi-isotropic turbulence
X Scaling - adimensional parameters : z,, H, u.

¥~ Stable PBL:
X | << H (stability embeds turbulent motion)
X Turbulence is local (no influence from surface), stronger on horizontal
X Scaling : (W), @w), » H

¥~ Unstable (convective) PBL
X | ~ H (large eddies)
X Turbulence associated mostly to thermal production
X Turbulence is non-homogeneous and asymmetric (top-down, bottom-up)

X Scaling: H, g, " Z q*=E0 g, = o
W, = 0:(WHV)SH — H ’ W ' W,

v
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13,

Height (meters)

PBL: Diurnal variation

Inversion

o
(S
o
o

-
o
o
o

500

Sunrise

Convective
Mixed Layer Residual Layer

Clear convective PBL

Cloudy convective PBL Stable (nocturnal) Layer

Noon

sSunset Sunrise

Adapted from Introduction to Boundary Layer Meteorology -R B. Stull, 1988
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£ Clouds effects on climate
-y
Greenhouse effect : warming
High clouds, Infrared radiation
like cirrus

Boundary layer clouds
(low clouds)
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 a@ PBL: State variables
-y e

Clear PBL
Specific q, = m,
humidity v md +m
Vv
. —Rd/cp
Potential 0= T(_p_j
temperature po

no liquid water is condensed (g = 0)

dy BI:9
Y |
o |
L, |
a |
e | |
l R |
S |
21 0 |
| 1 Osat :
| \ |
| '. :
[a/kg] [K]

Conserved variables

Cloudy PBL
m, +m,
Total water G =
content Mg + M, +M,
Luthdt_wlater 91 ~ 0 . Ly q Evaporation
potenta C temperature
temperature P

height [m]

liquid water is condensed

e| qIT qt'qsat
i 1
A
i I Cloud
! i base
1] 1
il',_ Osat i
i 1 1
H I .
[9/kg] [K] [9/kg]

Conserved variables
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Clear Convective PBL

d.

qsat

0,

Stephan de Roode, Ph.D thesis

— , surface layer

Free atmosphere

20/29



e Clear Convective PBL

¥~ Buoyantly-driven from surface

3 — " turbulent fluxes : a function of convective
o i scaling variables: L
Inversion H W, W,
\ Turbulent transport and
xH pressure term = . dH T
0.7 H ‘1& level of neutral buoyancy PBL height: at = WA W,
E
AN
P\ _ wi _
\ ¥~ Entrainment rate: w,=A g with
\,  Main source of TKE (a possible parameterization ) 0. H AQy
\ production 0 173
\ W, =| (W), H
\ ,
\ id ) ! ro_
CBL \ Fluxes at PBL top: Wy, =—-WAy
{_} wl{_]‘l

@ Key parameters: W, AG, , H, (W &),
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Cloudy boundary layers

Stephan de Roode, Ph.D thesis
In

Free atmosphere

[ A S REREEEE SN SN NRNEE |

Inversion layer

""""" mixed layer
|+
/
\ Sirtace ayer

Stratocumulus
topped PBL
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¥~ Complicated turbulence structure

Cloud top entrainment

Stratocumulus topped boundary layer

— cloud top

Long—waveécooling
i I
|\

condensation

|
)‘\ Long-wave warming
-
.,-r""Hﬁ

cloud base

T

\ Stratocumulus

[} wl[_] ‘L.l

¥~ Buoyantly driven by radiative cooling
at cloud top

¥~ Surface latent and heat flux play an
important role

¥~ Cloud top entrainment an order of
magnitude stronger than in clear PBL

&~ Solar radiation transfer essential for
the cloud evolution

F”Key parameters:

w, A6, ,H,(W8&),

(Way),, AQ,, z,, AF

23/29



Cloudy boundary layers

Stephan de Roode, Ph.D thesis

[

Free atmosphere

[ A S REREEEE SN SN NRNEE |

_ Inversion layer

]'l"_ . . . eEEEssEssmmsmEEEms

\f

mixed layer

surface layer

Dry-adiabatic
lapse rate

wet-adiabatic
lapse rate

[c]

Free atmosphere

Inversion layer

Conditionally
unstable cloud

Stratocumulus
topped PBL

Cumulus PBL

layer

Subcloud mixed

surrace layer

LR FREEEENNN NI I'I'I'I']
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RN Cumulus capped boundary layers

“¥”Buoyancy is the main mechanism that forces cloud to rise

Z4
Active cloud

; cloud top e M I (R

'.i Z T..r.. cens

AR e ) IR

£\ LOCT™ " ‘convaction

Environment

;- : 2 1rad- LOVeL Of free .
Lf-— level of free convection LFC convection ‘..;f,-','::‘:-‘:-;i \,9;*,‘;1
¥ level of neutral buoyancy Z B o R ARERR] A ACREEEERRERERS PERR AR

: Cloud base

: or LCL

' 0 =
(4] W', sv or ev
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RN Cumulus capped boundary layers

“¥”Buoyancy is the main mechanism that forces cloud to rise

¥ Represented by mass flux convective

2 cloud top

| schemes M. (y, —y,) =kwy/
¥~ Decomposition: cloud + environment

&~ Lateral entrainment/detrainment rates
prescribed

f__%.,f-""' level of free convection
¥

level of neutral buoyancy @Key parameters H ’ Zb , (W’ 0\;)0 ’ (W’q\’/)O

HHH“‘H 62 environ 82 environ

0
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V o PBL: Summary
-y -

"“§~ Characteristics :
X several thousands of meters — 2-3 km above the surface
X turbulence, mixed layer
X convection
X Reynolds framework

‘& Classification:
X neutral (extremely rare)
X stable (nocturnal)
X convective (mostly diurnal)

¥~ Clear convective

¥~ Cloudy (stratocumulus or cumulus)
X Importance of boundary layer clouds (Earth radiative budget)
X Small liquid water contents, difficult to measure
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