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Part 4: Representing cloud
structure

e Representing cloud fraction, overlap and inhomogeneity

e What is the impact of overlap and inhomogeneity on the
radiation budget?



Cloud fraction parametrization

e If cloud is diagnosed only when gridbox-mean g, > g,
then resulting cloud fraction can only be 0 or 1

qS(T) \_-7"‘/—: A ::::-.:'T—"'—’ —
q=q+q >~ -
1
Cloud fraction Cloud can form when
0 L gridbox RH < 100%

e Cloud fraction can be diagnosed from prognostic or
diagnostic sub-grid distribution of humidity and cloud

e ECMWEF uses a prognostic equation for cloud fraction



Multi-region two stream

e E.g. Met Office Edwards-Slingo scheme

Layer 1 .
e Solve for two fluxes in clear and cloudy
regions
Layer 2 — Matrix is now denser (pentadiagonal

rather than tridiagonal)
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Are we using computer time wisely?

e Radiation is an integral:

F(2) =

.At _L LX Lﬂ 1 (z,Q,X,v,t)dQdxd vdt

Dimension | Typical number | How well is this | Consequence of poor
of quadrature dimension resolution
points known?
Time 1/3 (every 3 h) At the timestep of | Changed climate sensitivity
the model (Morcrette 2000); diurnal
cycle (Yang & Slingo 2001)
Angle 2 (sometimes 4) | Well (some +6 W m-2 (Stephens et al.
ungectaimty ice | 2001)
Nphase Yunctiofis
Space 2 (cIear+cIoudyKTl500rIy (clouds! Up to a 20 W m-2 long-term
< bias (Shonk and Hogan
LA~ 2009)
Spectrum 100-250 Very well (HITRAN | Incorrect climate response

database)

to trace gases?




Three further issues for clouds

= e C(Clouds in older GCMs used a simple cloud
fraction scheme with clouds in adjacent
layers being maximally overlapped

‘ 1. Observations show that vertical overlap of clouds in two
layers tends towards random as their separation
increases

2. Real clouds are horizontally inhomogeneous, leading to
% albedo and emissivity biases in GCMs (Cahalan et al
1994, Pomroy and Illingworth 2000)

3. Radiation can pass through cloud sides, but these 3D
% effects are negelcted in all current GCMs
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Height (km)

Cloud overlap parametrization

e Even if can predict cloud fraction versus height, cloud
cover (and hence radiation) depends on cloud over/ap

Random overlap Exponential-random overlap (o=0.6) Maximum-random overlap

. . . — 0 . . . — 0 . . N 0
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Cloud cover Cloud cover Cloud cover

Maximum overlap

Height (km)

Cloud cover

e (Observations (Hogan and Illingworth 2000) support
“exponential-random overlap”:

— Non-adjacent clouds are randomly overlapped
— Adjacent clouds correlated with decorrelation length ~2km
— Many models still use "*maximum-random overlap”




example

Cloud overlap from radar

e Radar can

observe the

actual
overlap of

clouds

<t
o
[ap]
o
od
o
—
o
| o
(&N}
| o
—
5)
T
| 0=
T o
E
T
~
r w
1 ~—
o
(4]
Kol
)
IHGM.. wl
-
g 1
=
[
-
ko) Q
=
g =)
1 N o | ©
I — .m
S 3
o [&]
o
—
o o

(wnf) ybreH

(wny) ybioH

13 14 15 16 17 18 19 20 21 22 23 24
Time (UTC)

12



Level separation Az (km)
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Cloud overlap:

Vertically non-continuous cloud
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o Vertically isolated clouds are randomly overlapped

o Overlap of vertically continuous clouds becomes rapidly

more random with increasing thickness, characterized
by an overilap decorrelation length z, ~ 1.6 km

Hogan and Illingworth (QJ 2000)



Cloud overlap globally

e Latitudinal dependence of decorrelation length from Chilbolton and
the worldwide ARM sites

- More convection and less shear in the tropics so more maximally overlapped
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Why is cloud
structure
important?

An example of non-linear
averaging

Clear air Cloud

Inhomogeneous cloud

B § 5

Non-uniform clouds have lower
mean emissivity & albedo for same
mean optical depth due to curvature
In the relationships




Example from MODIS
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e By scaling the optical depth it appears we can get an
unbiased fit to the true top-of-atmosphere albedo
— Until McRad (2007), ECMWF used a constant factor of 0.7

— Now a more sophisticated scheme is used



Observations of horizontal structure

Rossow et al. (2002) Cahalan et al. (1994) Shonk and Hogan (2008)
Satellite (ISCCP) Microwave radiometer Radar & microwave radiometer
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e Typical fractional standard deviation ~0.75
Shonk et al. (QJRMS 2012)



GCM

Cloud fraction
Water content
(Variance?

Observations

Variance
) Overlap assumption

Cloud generator

Raisanen et al. (2004)

X

LT

Water content

Horizontal distance

Pincus, Barker and Morcrette (2003)

e Generate random sub-
columns of cloud

- Statistics consistent with
horizontal variance and
overlap rules

e ICA could be run on each

- But double integral (space
and wavelength) makes this
too slow (~104 profiles)

e McICA solves this problem

- Each wavelength (and
correlated-k quadrature
point) receives a different
profile -> only ~102 profiles

- Modest amount of random
hoise not believed to affect
forecasts



Alternative method: Tripleclouds

— 14

E 12 e Ice water content from

~ ‘g Chilbolton radar, log,,(kg m-3)
S o

O 4

L

14
£ 12 e Plane-parallel approx:
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= 'E | - 2 regions in each layer, one clear
S 6 and one cloudy
2,
L 2

e “Tripleclouds”:
- 3 regions in each layer
- Alternative to McICA

- Uses Edwards-Slingo capability
for stratiform/convective regions
for another purpose

1 2 3 4 5 6 7 8

Time (hours) Shonk and Hogan (JClim 2008)



latitude

latitude

Shonk and Hogan (2010)

Cloud radiative forcing (CRF) is change to top-of-atmosphere net flux due to clouds
Clouds cool the earth in the shortwave and warm it in the longwave:

(a)

SW CRF /W m™2: CERES data

(b)

(b)

latitude

LW CRF /W m™2: CERES data
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LW TOA horizontal shift (TCm — PPm) / W m=2




SWCRF /W m™

Horizontal structure, maximum overlap (b)
0 Horizontal structure, realistic overlap 40
Horizontally homogeneous, max overlap . . .
£ SR ~ B B
=
: : : : : —
400 oo d e N 0
~12 : : : : : —1 : : : : :
—%D -60 -30 0 30 60 90 —%D -60 -30 0 30 60 90
latitude latitude

e Correcting cloud structure changes cloud radiative effect by
around 10%

e Impact of adding horizontal structure about twice that of
improving vertical overlap

e Note that uncertainties in the horizontal structure effect are
much larger than in the vertical overlap effect



Part 5: Remaining challenges

e Improve efficiency

— Radiation schemes often the slowest part of the model, so
may called infrequently and not in every model column

e Improve accuracy
— Better spectroscopic data, particularly the continuum

— Better treatment of upper stratosphere/mesosphere to
enable satellite observations here to be assimilated

— Evaluate against new observations

o Add new processes
— Radiative properties of prognostic aerosols
— Three dimensional radiative transfer in presence of clouds
— Non-local-thermodynamic equilibrium for high-top models
— Cloud inhomogeneity information from cloud scheme



. Because the Planck function should not vary significantly
within a band (Fu & Liou 1992)

. To minimize number of active gases in each band, due to
expense of treating many gases (Mlawer et al. 1997)

. Because some technigues assume spectral overlap of different
gases is random, not valid over large intervals (Edwards 1996)

. To represent the slow variation of cloud and aerosol absorption
and scattering across the spectrum (Ritter & Geleyn 1992)

But Modest & Zhang (2002) proposed full-spectrum
correlated-k (FSCK) method for combusting gases

- Their formulation is unnecessarily complex and can be simplified
- Pawlak et al. (2004) showed that this method works in the shortwave

- More tricky to apply FSCK to longwave atmospheric radiative transfer,
where variations in Planck function and spectral overlap are important
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Planck function

Water vapour spectrum
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Planck function

Water vapour spectrum

Discretize such that heating rate error in
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e Heating-rate error converges rapidly (~2"9 order) with
number of points in integration

e Flattens off because of imperfect spectral correlation at
different heights due to pressure broadening

0

500

Benchmark 10

_ FSCK ng=10
___FSCK ng=13
FSCK ng=17

B

30r standard atmosphere,
water vapour only

Mid-latitude summer

Mean heating-rate error (K d‘1)
o
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Heating rate (K d™') Number of quadrature points

e Select discretizations of the spectrum of each gas with
similar error: 0.035 Kd! - ny,0=13, Ncor=15, nyg3=6
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e Inefficient method:
Ni20XNco2=195

Ov
1

e Efficient method: often
one gas dominates:
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e Use a cube for 3 gases
- nH20+nco2+no3'2:32 r‘egionS
- “Hypercube" for more 0.9

e Properties in each region &,

- Integral of Planck function 0.99
stored as a lookup table vs T

- (Gas absorptions in each
regions chosen to minimize a
cost function expressing
difference in heating-rate
and flux profile from line-
by-line benchmark in a CO?2 0 0 H20
number of test profiles g g

Hogan (JAS 2010)

0.999
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0.999 0.999

0.99 0.99



Height (km)

Line=by=line calculation
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e Top-of-atmosphere flux errors (W m-2):

4 training profiles: mid-lat summer, sub-arctic winter, tropical and MLS 2xCO,

32-band model

60 —

50 ‘
£ 40 ~7 [—sas
= - - - MLW
Ji::nao .- SAW 2<CO,
‘© ..., Tropics 3002
T 20

(c)

0 <
-04 -0.2 0 0.2 0.4
Heating rate error (K d“)

4 other profiles

Not part of
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e Error in change to top-of-atmosphere flux due to doubling CO,:
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Is this effect important?
And how can we represent it in a GCM?
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The three main 3D effects

3D radiation ICA

- N

e Effect 1: Shortwave cloud side illumination
- TIncoming radiation is more likely to intercept the cloud
- Affects the direct solar beam
- Always increases the cloud radiative forcing
- Maximized for a low sun (high solar zenith angle)
- Flux is less for low sun, so diurnally averaged effect may be small




Three main 3D effects continued

o Effect 2: Shortwave side leakage
- Maximized for high sun and isolated clouds
- Results from forward scattering

W - Usually decreases cloud radiative forcing

- But depends on specific cloud geometry

- Affects the diffuse component

o Effect 3: Longwave side effect

- Above a field of clouds, the clouds
subtend a larger fraction of the
downward-looking hemisphere than
the areal cloud coverage (accounting

for cos 6 dependence of contribution
to upwelling irradiance)

- Hence longwave cloud radiative
forcing is typically increased
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3D effect on TOA shortwave radiative forcing (%)
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(a) 3D radiative transfer calculations

----- Small cumulus (Benner & Evans 2001)
— Cumulus (Pincus et al. 2005)
O Cumulonimbus (Di Giuseppe & Tompkins 2003)
Contrails perp. to sun (Gounou & Hogan 2007)
Contrails parallel to sun (Gounou & Hogan 2007)

leakage effect

)

1. Shortwave side
illumination

e 3D

15 30 45 60
Solar zenith angle (°)

79

90

effects significant in

convective clouds

Cumulus (Benner & Evans
2001, Pincus et al. 2005)

Deep convection

(DiGiuseppe & Tompkins
2003)

3D effects much smaller in stratiform clouds

- Incirrus, SW and LW effects up to 10% for optical depth ~1, but
negligible for optically thicker clouds (Zhong, Hogan and Haigh 2008)

e How can we represent this effect in GCM radiation schemes?



IcA e First part of a shortwave calculation
is to determine how far direct
(unscattered) beam penetrates
j ;_ - Solve this equation independently in the
clear and cloudy regions (3 is optical
Cloudy region Clear region a8 — _,LTU
| P |
I - The solution is Beer's law:

Normalized optical depth into layer

— Cloud

Clear rggion ICA

- -- Cloudy'fegion ICA

Clear r'gion 3D
lregion 3D
Clear rzgion 3D fit

Cloud' region 3D fit
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3D radiation o Alternative: add terms expressing

exchange between regions a & b:
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e The next step is to use the two-stream equations to calculate
the diffuse part of the radiation field

- Downwelling stream: diSf_ — 3 [_-yrlx [~ 4+ It S“_}
df o a a-+ a— 1+
- Upwelling stream: — & 0 [—"/ff + 5! S }

Source terms
Shortwave: direct solar beam
- Solution a little more complex when Longwave: Planck function
integrated across a layer, but efficient
enough to be implemented ina GCM
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e New idea tested
using a single layer
of homogeneous
cloud illuminated by
a monochromatic
beam

- Performs
surprisingly well
against 3D
calculations

e Next step: longwave

Hogan and Shonk (2013)



Summary

e The radiation scheme is a key part of both weather,
seasonal and climate forecasts

e While the physics is known, there are still challenges in
implementing this accurately and efficiently in models

e Significant errors still remain, particularly in the
representation of clouds



