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4D Variational Data Assimilation
4D-Var comprises the minimisation of:
1 _
Jx) = S[HE) = yI"RTI[H(x) —y]
1 1
+  Z(x0 —xp) "B (xo — xp) + E}'(x)TC_l}'(x)

2

@ x is the 4D state of the atmosphere over the assimilation window.
@ H is a 4D observation operator, accounting for the time dimension.

o F represents the remaining theoretical knowledge after background
information has been accounted for (balance, DFI...).

o Control variable reduces to xg using the hypothesis: x; = M;(x;_1).

@ The solution is a trajectory of the model M even though it is not perfect...
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Weak Constraint 4D-Var CECMWF

A typical assumption in data assimilation is to ignore model error (bias and
random).

@ The perfect model assumption limits the length of the analysis window that
can be used to roughly 12 hours.

@ Model bias can affect assimilation of some observations (radiance data in the
stratosphere).

@ In weak constraint 4D-Var, we define the model error as
i =x; — M;(x}_;) fori=1,...,n
and we allow it to be non-zero.

o Note: x! represents the true atmospheric state which is of course not known.
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Weak Constraint 4D-Var

@ We can derive the weak constraint cost function using Bayes’ rule:

p(xb;yo .. .yn‘xo .. .xn)p(xo .. .xn)

P(Xo - Xp|Xp; Yo - ¥Yn) =
( d ) P(Xb; Yo+ - Yn)

@ The denominator is independent of xg - - - X,.

® The term p(Xp; Yo - - ¥Yn|Xo -+ - Xn) simplifies to:

p(xs/x0) ] T pyilx:)

i=0

@ Hence

P(Xo - Xn|Xb; Yo - - ¥n) o p(Xb[x0) [H P(Yi|Xi)1 p(xo -+ xn)
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Weak Constraint 4D-Var CECMWF

P(Xo -+ Xn|Xb; Yo -+ ¥n) o< P(Xb|Xo) [H p(Yi|Xi)] P(Xo -+ Xn)

@ Taking minus the logarithm gives the cost function:

n
J(xo -+ xn) = —log p(xs|x0) — > _ log p(yi|x;) — log p(xo - - xn)
i=0

@ The terms involving x; and y; are the background and observation terms of
the strong constraint cost function.

@ The final term is new. It represents the a priori probability of the sequence of
states xg - - - Xp.
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Weak Constraint 4D-Var CECMWF

@ Given the sequence of states xq - - - X,,, we can calculate the corresponding
model errors:
i =% — M(xj—1) fori=1,...,n

@ We can use our knowledge of the statistics of model error to define
p(Xo -+ Xn) = p(X0; M1 1)

@ One possibility is to assume that model error is uncorrelated in time. In this
case:

p(xo---xp) = p(x0)p(n1) - - P(1n)

o If we take p(xo) = const. (all states equally likely), and p(n;) as Gaussian
with covariance matrix Q;, weak constraint 4D-Var adds the following term

to the cost function:
1 — _
2 Z 77iTQ; 177i
i=1
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SSECMWF

Weak Constraint 4D-Var

@ For Gaussian, temporally-uncorrelated model error, the weak constraint
4D-Var cost function is:

Jx) = %(xo—xb)TB_l(xo—xb)

£ DI — vl TR M) — v
i=0

* % D bk = Mi(xi-)]7 Q7 ki = My(xi-1)]
i=1

@ Do not reduce the control variable using the model and retain the 4D nature
of the control variable.

@ Account for the fact that the model contains some information but is not
exact by adding a model error term to the cost function.

@ The model M is not verified exactly: it is a weak constraint.

o If model error is correlated in time, the model error term contains additional
cross-correlation blocks.
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Qutline CSECMWF

© Practical 4D Variational Data Assimilation
@ Model Error Forcing Control Variable
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4D-Var with Model Error Forcing

1 ¢ _
Jxom) = 5D [Hxi) =yl TR [H(x:) — yi
i=0
1 1
+ §(X0 —x5) "B (%0 — xp) + 577TQ7177
with x; = M,‘(X,'_l) + 7.
@ 7); has the dimension of a 3D state,
@ 1); represents the instantaneous model error,

@ 7); is propagated by the model.

@ All results shown later are for constant forcing over the length of one
assimilation window, i.e. for correlated model error.
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4D-Var with Model Error Forcing ECMWF

@ TL and AD models can be used with little modification,

@ Information is propagated between obervations and initial condition control
variable by TL and AD models.
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Qutline CSECMWF

© Practical 4D Variational Data Assimilation

@ 4D State Control Variable
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4D State Control Variable

@ Use x = {x;}i=0,....n as the control variable.

@ Nonlinear cost function:

Jx) = %(xo—xb)TB_l(xo—xb)

b5 DO — i TR () i

b3S IMe1) — %] TQ M (k) ]

i=1
@ In principle, the model is not needed to compute the J, term.

@ In practice, the control variable will be defined at regular intervals in the
assimilation window and the model used to fill the gaps.
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4D State Control Variable SCECMWF

time

@ Model integrations within each time-step (or sub-window) are independent:

— Information is not propagated across sub-windows by TL/AD models,
— Natural parallel implementation.

@ Tangent linear and adjoint models:

— Can be used without modification,
— Propagate information between observations and control variable within each
sub-window.

@ Several 4D-Var cycles are coupled and optimised together.
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@ Covariance Matrix
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Model Error Covariance Matrix

(]

SSECMWF

An easy choice is Q = aB.

If Q and B are proportional, dxg and 1 are constrained in the same
directions, may be with different relative amplitudes.

They both predominantly retrieve the same information.

B can be estimated from an ensemble of 4D-Var assimilations.
Considering the forecasts run from the 4D-Var members:
— At a given step, each model state is supposed to represent the same true
atmospheric state,
— The tendencies from each of these model states should represent possible
evolutions of the atmosphere from that same true atmospheric state,
— The differences between these tendencies can be interpreted as possible
uncertainties in the model or realisations of model error.

Q can be estimated by applying the statistical model used for B to
tendencies instead of analysis increments.

Q has narrower correlations and smaller amplitudes than B.
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. . LCECMWF
Model Error Covariance Matrix b

@ Most of the techniques developped to model B can be re-used to model Q
(spectral technique, wavelets, filtering...).

@ Obtaining samples of model error is much more difficult:
— Currently, tendency differences between integrations of the members of an
ensemble are used as a proxy for samples of model error.
— Use results from stochastic representation of uncertainties in EPS.
— Compare the covariances of 1 produced by the current system with the matrix
Q being used.

e It is possible to derive an estimate of HQH' from cross-covariances between
observation departures produced from pairs of analyses with different length
windows (R. Todling).

— This produces a projection of Q on a fixed observing network, not in the full
matrix.

@ Characterising the statistical properties of model error is one of the main
current problems in data assimilation and ensemble forecasting.

Weak Constraint 4D-Var Data Assimilation Training Course 14 /29



Qutline

© Results

o Constant Model Error Forcing
@ Systematic Model Error
o Is it model error?

Weak Constraint 4D-Var Data Assimilation Training Course

SSECMWF



Qutline CSECMWF

© Results

o Constant Model Error Forcing
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Results: Fit to observations

AMprofiler-windspeed Std Dev N.Amer
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o Fit to observations is more uniform over the assimilation window.

@ Background fit improved only at the start: error varies in time ?
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Mean Model Error Forcing CCECMWF
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Model level 11 (a5hPa) e
July 2004 o e R..sc.m.mmmm.nrm i

Mean M.E. Forcing — |

M.E. Mean Increment

Control Mean Increment

Manday 5 July 2004 00UTC CECHVF ean Increment enc)

Monday 5 July 2004 00UTC GECMWF Mean Increment (eptg)
‘Temperature, Model Level 1 ‘Temperature, Model Level 11
Vi 537, Man < 161, AMS Global=0.66, Nhem=0.54, S hem=0.65, Tropics=0.77 Min =-1.60, Max = 1.15, RMS Global=0.55, N.hem=0.51, S.hem=0.41, Tropics=0.69

2
o )
i Pty ) 1.6
o3 7 > 14
5 e e e - ¥ 12
| - " - . 1
S - & 0.

Weak Constraint 4D-Var Data Assimilation Training Course 16 / 29



Qutline ECMWF

© Results
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Weak Constraint 4D-Var Data Assimilation Training Course



Weak Constraint 4D-Var with Cycling Term SECMWF

Model error is not only random: there are biases.

For random model error, the 4D-Var cost function is:

Joom) = 2 S[HO6) v R ~ yi
i=0

1

1
+ 2(x0 —xp) "B} (x0 — xp) + §nTQ’1n

For systematic model error, we might consider:
1¢ Tp-1
J(xo,n) = 3 ;[H(Xi) —yil "R [H(xi) — yil

1 1
+ E(Xo —xp) "B (x0 — xp) + 5(77 — ) TQ 7 (n — mp)

Test case: can we address the model bias in the stratosphere?
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Weak Constraint 4D-Var with Cycling Term

SECMWF
No Cycling Term With Cycling Term
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Monthly Mean Model Error (Temperature (K/12h), July 2008)
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Weak Constraint 4D-Var with Cycling Term SECMWF
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Monthly Mean Analysis Increment (Temperature (K), July 2008)
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Weak Constraint 4D-Var with Cycling Term SECMWF

AMSU-A Background departures, Channels 13 and 14
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Weak Constraint 4D-Var with Cycling Term CECMWF

Weak constraints 4D-Var with cycling - Metop-A AMSU-A Tb 13 N.Hemis - Model level 14
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The short term forecast is improved with the model error cycling.
Weak constraint 4D-Var can correct for seasonal bias (partially).
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. LCECMWF
Model Error or Observation Error? b

Friday 30 Aprl 2004 21UTC GECMWF Mean Model Error (eféa) Friday 30 April 2004 21UTC GECMWF Mean Model Error (ef8k)
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@ The only significant source of observations in the box is aircraft data (Denver
airport).

@ Removing aircraft data in the box eliminates the spurious forcing.

Weak Constraint 4D-Var Data Assimilation Training Course 22/29



. LCECMWF
Model Error or Observation Error? b

Aircraft Temperature Bias
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Observations are biased.

Figure from Lars Isaksen
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Is it model error? b

Strong Constraint Weak Constralnt
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The mean temperature increment is smaller with weak constraint 4D-Var
(Stratosphere only, June 1993).
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. LCECMWF
Is it model error? b

ERA interim Weak Constraint
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The work on model error has helped identify other sources of error in the system
(balance term).
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Error or Model Error?

Weak constraints 4D-Var with cycling - Metop-A AMSU-A Tb 13 N.Hemis - Model level 14

SSECMWF

Observation
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Observation error bias correction can compensate for model error.
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Weak Constraint 4D-Var Configurations SCECMWF

@ 6-hour sub-windows:

6 hours 6 hours
— Better than 6-hour 4D-Var: two cycles are coupled through Jg,
— Better than 12-hour 4D-Var: more information (imperfect model), more
control.

@ Single time-step sub-windows:
— Each assimilation problem is instantaneous = 3D-Var,
— Equivalent to a string of 3D-Var problems coupled together and solved as a
single minimisation problem,
— Approximation can be extended to non instantaneous sub-windows.
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Weak Constraint 4D-Var: Sliding Window

time

(1) Weak constraint 4D-Var
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Weak Constraint 4D-Var: Sliding Window CECMWF

, i
time | o | time

(1) Weak constraint 4D-Var (2) Extended window
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Weak Constraint 4D-Var: Sliding Window COECMWF

| o time

(2) Extended window

(3) Initial term has converged
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Weak Constraint 4D-Var: Sliding Window COECMWF

| T time

(3) Initial term has converged (4) Assimilation window is moved forward
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Weak Constraint 4D-Var: Sliding Window

time ' T | time

(1) Weak constraint 4D-Var (2) Extended window

! time ' T | time

(3) Initial term has converged (4) Assimilation window is moved forward

@ This implementation is an approximation of weak contraint 4D-Var with an
assimilation window that extends indefinitely in the past...

@ ...which is equivalent to a Kalman smoother that has been running
indefinitely.
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Weak Constraint 4D-Var: Summary and Questions CECMWF

@ In the forcing formulation of weak constraint 4D-Var:

— Background term to address systematic error,
— Interactions with variational observation bias correction,
— Extend model error to the troposphere and to other variables (humidity).

@ Weak constraint 4D-Var with a 4D state control variable:

— Four dimensional problem with a coupling term between sub-windows and can
be interpreted as a smoother over assimilation cycles.
— Can we extend the incremental formulation?

@ The two weak constraint 4D-Var approaches are mathematically equivalent
(for linear problems) but lead to very different minimization problems.
— Can we combine the benefits of treating sub-windows in parallel with efficient
minimization?
— 4D-Var scales well up to 1,000s of processors, can it scale to 100,000s of
processors in the future?
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Weak Constraint 4D-Var: Open Questions CECMWF

@ Weak Constraint 4D-Var allows the perfect model assumption to be removed
and the use of longer assimilation windows.

— How much benefit can we expect from long window 4D-Var?

@ Weak Constraint 4D-Var requires knowledge of the statistical properties of
model error (covariance matrix).
— The forecast model is such an important component of the data assimilation
system. It is surprising how little we know about its error characteristics.
— How can we access realistic samples of model error? How can observations be
used?
— 4D-Var can handle time-correlated model error. What type of correlation
model should be used?
— Can we distinguish model error from observation bias or other errors? Is there
a need to anchor the system?

@ The statistical description of model error is one of the main current
challenges in data assimilation.
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