
Data Assimilation Training Course, Reading, 16-20 March 2015

Tangent linear and adjoint models
for variational data assimilation

Angela Benedetti

with contributions from:

Marta Janisková, Philippe Lopez, Lars Isaksen, Gabor Radnoti and
Yannick Tremolet

Data Assimilation Training Course, Reading, 16-20 March 2015

Introduction

• 4D-Var is based on minimization of a cost function which measures the distance

between the model with respect to the observations and with respect to the

background state

• The cost function and its gradient are needed in the minimization.

• The tangent linear model provides a computationally efficient (although

approximate) way to calculate the model trajectory, and from it the cost function.

The adjoint model is a very efficient tool to compute the gradient of the cost

function.

• Overview:

– Brief introduction to 4D-Var with focus on TL/AD aspects

– General definitions of Tangent Linear and Adjoint models and why they are

extremely useful in variational assimilation

– Writing TL and AD models and testing them

– Brief mention of automatic differentiation software

Data Assimilation Training Course, Reading, 16-20 March 2015

     1 1
0 0 0 0

0

1 1
() ()

2 2

n
TT

b b i i i i i i i
i

J H M H M

J Jb o

 



     x x B x x x y R x y
 

4D-Var

In 4D-Var the cost function can be expressed as follows:

B background error covariance matrix,
R observation error covariance matrix (instrumental + interpolation +

observation operator error),
y_i observations
x_o initial model state
x_b background state

M forward nonlinear forecast model (time evolution of the model state, index i),
H observation operator (model space  observation space).

  
0

1 ' 1
x 0 0 0

0

min () [] 0
n

T T
b i i i i i i

i

J J t ,t H M 



     B x x M H R x y

H’T = adjoint of observation operator and M’T = adjoint of forecast model.

Data Assimilation Training Course, Reading, 16-20 March 2015

Incremental 4D-Var at ECMWF

• The gradient of the cost function to be minimized is:

 
0

1 ' 1 '
0 0

0

min [,] 0
n

T T
x i i i i i

i

J J B x M t t H R H x d   



    

• In incremental 4D-Var, the cost function is minimized in terms of increments:

with the model state defined at any time ti as:

 i i i tid y H x 

• 4D-Var cost function can then be approximated to the first order by:

where is the so-called departure computed using the
nonlinear model and observational operator.

0 0[,]i ix M t t x 

and are the tangent linear models which are used in the
computations of incremental updates during the minimization (iterative
procedure).

and are the adjoint models which are used to obtain the
gradient of the cost function with respect to the initial condition.

TM 

t bx x at t=0)tx is the trajectory around which the linearization is performed (

'T
iH

M  '
iH

)],['()],['(
2

1

2

1
)(00

'1

0
00

'
0

1
00 iii

n

i

T
iii

T dxttMHRdxttMHxBxxJ  



  

00),(, titiitii xttMxxxx  

Data Assimilation Training Course, Reading, 16-20 March 2015

where is the linearised version of about and

are the departures from observations.

Details on linearisation

'
iH

In the first order approximation, a perturbation of the control variable
(initial condition) evolves according to the tangent linear model:

where i is the time-step index.
The perturbation of the cost function around the initial state is:

   

   

1 ' 1 '
0 0 0 0

0

1 ' ' ' ' 1 ' ' ' '
0 0 1 0 0 1 0 0

0

1 1
(,)

2 2

1 1
.....

2 2 i i

n TT
i i i i i i i

i

n T
T

i i i i i i i
i

J x x x B x H x d R H x d

x B x H M M M x d R H M M M x d

     

   

 



 
 



    

   





ix ()i i i id y H x 
iH

1
'

1

1

)(
 
















iii

x

i
i xMx

x

xM
x

i



Data Assimilation Training Course, Reading, 16-20 March 2015

The gradient of the cost function with respect to is given by:

Details of the linearisation (cnt.)

0x

0

1 ' ' ' ' 1 ' ' ' '
0 1 0 1 0 0

0

1 ' ' ' ' 1 ' ' ' '
0 0 1 1 0 0

0

1 ' ' 1 '
0 0

0

(...) (...)

... (...)

[,] ()

n
T

x i i i i i i i
i

n
T T T T

i i i i i i i
i

n
T T

i i i i i
i

J B x H M M M R H M M M x d

B x M M M H R H M M M x d

B x M t t H R H x d

  

 

 

 
 



 
 



 



    

   

  







0x
The optimal initial perturbation is obtained by finding the value
of for which:

0
0x J 

The gradient of the cost function with respect to the initial condition is
provided by the adjoint solution at time t=0. Let’s see how…

remembering that ()T T TAB B A

Data Assimilation Training Course, Reading, 16-20 March 2015

For any linear operator there exist an adjoint operator
such as:

Definition of adjoint operator

' *, ,x M y M x y

'M

where is an inner scalar product and x, y are vectors
(or functions) of the space where this product is defined.

It can be shown that for the inner product defined in the
Euclidean space :

0

*
0x J x  

*M

* 'TM M

,

We will now show that the gradient of the cost function at time
t=0 is provided by the solution of the adjoint equations at the
same time:

Data Assimilation Training Course, Reading, 16-20 March 2015

Usually the initial guess is chosen to be equal to the
background so that the initial perturbation
The gradient of the cost function is hence simplified as:

Adjoint solution

0 0x 

0

' ' 1
0

0

[,]
n

T T
x i i i

i

J M t t H R d




  
We choose the solution of the adjoint system as follows:

bx
0x

We then substitute progressively the solution into the
expression for

*
0x

*
ix

nidRHxMx

xMx

x

iiiii

n

,....,1,

0

1**
1

*
1

*

*
1

*
1

*
0

*
1










 (arbitrary “final” condition)

(initial condition)

(iterative solution)

Data Assimilation Training Course, Reading, 16-20 March 2015

Adjoint solution (cnt.)

0

*
0 xx J  

Finally, regrouping and remembering that and that
and we obtain the following equality:

*
1 0nx  

* 'TM M

0

* ' ' 1
0

0

[,]
n

T T
i i i

i

x M t t H R d





The gradient of the cost function with respect to the control
variable (initial condition) is obtained by a backward integration of
the adjoint model.

* 'TH H

...

))((

)(

1
1*

1
*
12

1*
2

*
2

*
1

*
3

*
3

*
2

*
1

1
1*

1
*
1

*
2

*
2

*
1

*
0










dRHMdRHMMxMMM

dRHMxMMx

Data Assimilation Training Course, Reading, 16-20 March 2015

Iterative steps in the 4D-Var Algorithm

1. Integrate forward model gives .

2. Integrate adjoint model backwards gives .

3. If then stop.

4. Compute descent direction (Newton, CG, …).

5. Compute step size :

6. Update initial condition:

Data Assimilation Training Course, Reading, 16-20 March 2015

Finding the minimum of cost function J is an
iterative minimization procedure

cost function J J(xb)

Jmini

m mD

1m m m mx x D  

Data Assimilation Training Course, Reading, 16-20 March 2015

An analysis cycle in 4D-Var

1st ifstraj:
• Non-linear model is used to compute the high-res
trajectory (T1279 operational, 12-h forecast)

• High-res departures are computed at exact obs
time and location

• Trajectory is interpolated at low res (T159)

1st ifsmin (70 iterations):
• Iterative minimization at T159 resolution
• Tangent linear with simplified physics to calculate

the increments
• The Adjoint is used to compute the gradient of the

cost function with respect to the departure in
initial condition

• Analysis increment at initial time is interpolated
back linearly from low-res to high-res and it provides
a new initial state for the 2nd trajectory run

2nd ifstraj:
• repeat 1st ifstraj and interpolates at T255 resolution

2nd ifsmin (30 iterations):
• repeat 1st ifsmin at T255

Last ifstraj:
• Uses updated initial condition to run another 12-h
forecast and stores analysis departures in the

Observational Data Base (ODB)

iδx

0δxJ
0δ x2 minimizations in the old

configuration
Now 3 minimizations

are operational!

Data Assimilation Training Course, Reading, 16-20 March 2015

Recap on TL and AD models

Data Assimilation Training Course, Reading, 16-20 March 2015

Simple example of adjoint writing

Data Assimilation Training Course, Reading, 16-20 March 2015

As an alternative to the matrix method, adjoint coding can be carried
out using a line-by-line approach.

Simple example of adjoint writing (cnt.)

Often the adjoint variables in mathematical formulations are
indicated with an asterisk

Do not forget the last equation!!! That too is part of the adjoint!

Data Assimilation Training Course, Reading, 16-20 March 2015

More practical examples on adjont coding:
the Lorenz model

where is the Prandtl number, the Rayleigh number, and

the aspect ratio.

is the intensity of convection,

is the maximum temperature difference

is the stratification change due to convection.

Details on the Lorenz model can be found in the references.

Data Assimilation Training Course, Reading, 16-20 March 2015

The linear code in Fortran

Linearize each line of the code one by one, and set dx/dt=y for simplicity:

y(1) = -p*x(1) +p*x(2) :Nonlinear statement
(1)yd(1) = -p*xd(1) +p*xd(2) :Tangent linear

y(2) = x(1)*(r-x(3)) -x(2) :Nonlinear statement

(2)yd(2) = xd(1)*(r-x(3))
-x(1)*xd(3) -xd(2) :Tangent linear

…etc

Remember that p, r, b are constants;
x(1), x(2) and x(3) are the independent variables;
y(1), y(2) and y(3) are the dependent variables.

We chose the suffix “d” for the tangent linear variable for consistency with the automatic differentation
software TAPENADE (see optional practical exercise). Adjoint variables are indicated with the suffix “b”.
This is just a convention.

Note that in the ECMWF Integrated Forecast System (IFS) the tangent linear and adjoint variables are
indicated without any subscripts and the nonlinear trajectory (x) is indicated with the suffix “5” (x5).

Data Assimilation Training Course, Reading, 16-20 March 2015

Adjoint of one instruction

We start from the tangent linear code:

yd(1)=-p*xd(1)+p*xd(2)

In matrix form, it can be written as:

which can easily be transposed (asterisk indicates adjoint variables):

The corresponding adjoint code in FORTRAN is:

xb(1)=xb(1)-p*yb(1)

xb(2)=xb(2)+p*yb(1)

yb(1)=0




















































1

2

1

1

2

1

0

010

001

y

x

x

ppy

x

x













































 





















*

*
2

*
1

*
1

*
2

*
1

1

000

10

01

y

x

x

p

p

y

x

x













Data Assimilation Training Course, Reading, 16-20 March 2015

Adjoint of one instruction (II)

We start again from the tangent linear code:
yd(2)= xd(1)*(r-x(3))-xd(2)- x(1)*xd(3)

In matrix form, it can be written as:

which can easily be transposed (asterisk indicates transposition):

The corresponding adjoint code in FORTRAN is:

xb(1)=xb(1)+(r-x(3))*yb(2)

xb(2)=xb(2)- yb(2)

xb(3)=xb(3)- x(1)*yb(2)

yb(2)=0

































































2

3

2

1

132

3

2

1

01)(

0100

0010

0001

y

x

x

x

xxry

x

x

x





















































































*

2

*

3

*

2

*
1

1

3

*

2

*

3

*

2

*
1

0000

100

1010

)(001

y

x

x

x

x

xr

y

x

x

x

















These terms come from the
trajectory! Needs to be stored
in memory or recomputed

Data Assimilation Training Course, Reading, 16-20 March 2015

Trajectory

The trajectory has to be available. It can be:

• saved which costs memory,

• recomputed which costs CPU time.

Depending on the complexity of the code, one

option or the other is adopted (or both options

at the same time).

Data Assimilation Training Course, Reading, 16-20 March 2015

The Adjoint Code

Property of adjoints (transposition):

Application: where represents the

line of the tangent linear model.

The adjoint code is made of the transpose of each line of

the tangent linear code in reverse order.

Data Assimilation Training Course, Reading, 16-20 March 2015

Adjoint of loops
In the TL code for the Lorenz model we have:
DO i=1,3
xd(i)=xd(i)+dt*yd(i)

ENDDO
dt is a constant for our purposes. This loop can be written

explicitly:
xd(1)=xd(1)+dt*yd(1)
xd(2)=xd(2)+dt*yd(2)
xd(3)=xd(3)+dt*yd(3)

We can now transpose and reverse the lines to get the adjoint:
yb(3)=yb(3)+dt*xb(3)
yb(2)=yb(2)+dt*xb(2)
yb(1)=yb(1)+dt*xb(1)

which is equivalent to
DO i=3,1,-1 !Reverse order of indeces!
yb(i)=yb(i)+dt*xb(i)

ENDDO

Data Assimilation Training Course, Reading, 16-20 March 2015

Conditional statements (“IF” statements)

• What we want is the adjoint of the statements which
were actually executed in the direct model.

• We need to know which “branch” of the IF statement
was executed

• The result of the conditional statement has to be stored:
it is part of the trajectory !!!

Data Assimilation Training Course, Reading, 16-20 March 2015

Tangent linear code Adjoint code

δx = 0 δx* = 0

δx = A δy + B δz δy* = δy* + A δx*

δz* = δz* + B δx*

δx* = 0

δx = A δx + B δz δz* = δz* + B δx*

δx* = A δx*

do k = 1, N

δx(k) = A δx(k1) + B δy(k)

end do

do k = N, 1,  1 (Reverse the loop!)

δx*(k 1) = δx*(k1) + A δx*(k)

δy*(k) = δy*(k) + B δx*(k)

δx*(k) = 0

end do

if (condition) tangent linear code if (condition) adjoint code

Summary of basic rules for line-by-line adjoint coding (1)

And do not forget to initialize local adjoint variables to zero !

Adjoint statements are derived from tangent linear ones in a reversed order

Order of operations is important
when variable is updated!

Data Assimilation Training Course, Reading, 16-20 March 2015

Tangent linear code Trajectory and adjoint code

if (x > x0) then

δx = A δx / x

x = A Log(x)

end if

------------- Trajectory ----------------

xstore = x (storage for use in adjoint)

if (x > x0) then

x = A Log(x)

end if

--------------- Adjoint ------------------

if (xstore > x0) then

δx* = A δx* / xstore

end if

Summary of basic rules for line-by-line adjoint coding (2)

The most common sources of error in adjoint coding are:
1) Pure coding errors
2) Forgotten initialization of local adjoint variables to zero
3) Mismatching trajectories in tangent linear and adjoint (even slightly)
4) Bad identification of trajectory updates

To save memory, the trajectory can be recomputed just before the adjoint
calculations (again it depends on the complexity of the model).

Data Assimilation Training Course, Reading, 16-20 March 2015

More facts about adjoints

• The adjoint always exists and it is unique, assuming spaces of finite
dimension. Hence, coding the adjoint does not raise questions about
its existence, only questions related to the technical implementation.

• In the meteorological literature, the term adjoint is often improperly
used to denote the adjoint of the tangent linear of a non-linear
operator. In reality, the adjoint can be defined for any linear operator.
One must be aware that discussions about the existence of the
adjoint usually should address the existence of the tangent linear
model.

• Without re-computation, the cost of the TL is usually about 1.5 times
that of the non-linear code, the cost of the adjoint between 2 and 3
times.

• The tangent linear model is not strictly necessary to run a 4D-Var
system (but it is needed in the incremental 4D-Var formulation in use
operationally at ECMWF). It is also needed as an intermediate step to
write and test the adjoint.

Data Assimilation Training Course, Reading, 16-20 March 2015

machine precision
reached

P
er

tu
rb

at
io

n
sc

al
in

g
 f

ac
to

r

Test for tangent linear model

Data Assimilation Training Course, Reading, 16-20 March 2015

Test for adjoint model

The adjoint test is truly unforgiving. If you do not have a ratio of the norm close to 1
within the precision of the machine, you know there is a bug in your adjoint.
At the end of your debugging you will have a perfect adjoint. If properly tested,
the adjoint is the only piece of code on Earth to be entirely bug-free (although you
may still have an imperfect tangent linear)!

Data Assimilation Training Course, Reading, 16-20 March 2015

Test of adjoint in practice…

• Compute perturbed variable (y) using perturbation in input variables (x,z) with
the tangent linear code

• Compute TL norm:
• Call adjoint routine to obtain gradients in x and z with respect to initial

perturbation in x and z from perturbation in y.

• Compute the norm from the adjoint calculation, using unperturbed state and
gradients:

• According to the test of adjoint NORM_TL must be equal to NORM_AD
to the machine precision!

z
z

y
x

x

y
y 











2
_ yTLNORM 

z
z

y
zz

x
x

y
xx

































*
0

*
0_ zzxxADNORM  

 00 , zx 

Data Assimilation Training Course, Reading, 16-20 March 2015

Automatic differentiation

• Because of the strict rules of tangent linear and adjoint coding,

automatic differentiation is possible.

• Existing tools: TAF (TAMC), TAPENADE (Odyssée), ...

– Reverse the order of instructions,

– Transpose instructions instantly without typos !!!

– Especially good in deriving tangent linear codes!

• There are still unresolved issues:

– It is NOT a black box tool,

– Cannot handle non-differentiable instructions (TL is wrong),

– Can create huge arrays to store the trajectory,

– The codes often need to be cleaned-up and optimised.

• Look in the “Supplementary material” for more information!

Data Assimilation Training Course, Reading, 16-20 March 2015

Useful References

• Variational data assimilation:
Lorenc, A., 1986, Quarterly Journal of the Royal Meteorological Society, 112, 1177-1194.
Courtier, P. et al., 1994, Quarterly Journal of the Royal Meteorological Society, 120, 1367-1387.
Rabier, F. et al., 2000, Quarterly Journal of the Royal Meteorological Society, 126, 1143-1170.

• The adjoint technique:
Errico, R.M., 1997, Bulletin of the American Meteorological Society, 78, 2577-2591.

• Tangent-linear approximation:
Errico, R.M. et al., 1993, Tellus, 45A, 462-477.
Errico, R.M., and K. Reader, 1999, Quarterly Journal of the Royal Meteorological Society, 125, 169-195.
Janisková, M. et al., 1999, Monthly Weather Review, 127, 26-45.
Mahfouf, J.-F., 1999, Tellus, 51A, 147-166.

• Lorenz model:
X. Y. Huang and X. Yang. Variational data assimilation with the Lorenz model. Technical Report 26, HIRLAM,

April 1996. Available on ftp site (see notes for practical session).
E. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130-141, 1963.

• Automatic differentiation:
Giering R., Tangent Linear and Adjoint Model Compiler, Users Manual Center for Global Change

Sciences, Department of Earth, Atmospheric, and PlanetaryScience,MIT,1997
Giering R. and T. Kaminski, Recipes for Adjoint Code Construction, ACM Transactions on

Mathematical Software, 1998
TAMC: http://www.autodiff.org/
TAPENADE: http://www-sop.inria.fr/tropics/tapenade.html

• Sensitivity studies using the adjoint technique
Janiskova, M. and J.-J. Morcrette., 2005. Investigation of the sensitivity of the ECMWF radiation scheme to input
parameters using adjoint technique. Quart. J. Roy. Meteor. Soc., 131,1975-1996.

	Training_course_2015_TLAD.pptx

